【題目】如圖,在三棱錐中,是等邊三角形,,,為三棱錐外一點,且為等邊三角形.

證明:

若平面平面,平面與平面所成銳二面角的余弦值為,求的長.

【答案】證明見解析;.

【解析】

的中點,連接,,證明平面,可得到結論;

為原點,軸,軸,軸建立空間直角坐標系,求出平面和平面的法向量,利用夾角公式求出二面角的余弦值,得出結論.

解:的中點,連接,

因為是等邊三角形,所以,

又因為,所以,

因為,所以平面,

因為平面,故

因為平面平面,

平面平面

所以平面,

,

故以為原點,軸,軸,軸建立空間直角坐標系,

的中點,連接,,

同理可證平面,,,

,

,,

所以,

設平面的一個法向量為,

,

,則

因為平面的一個法向量為

所以,

所以,

所以

因為為三棱錐外一點,

所以,

所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為F,過F的直線與拋物線交于A,B兩點,點O為坐標原點,則下列命題中正確的個數(shù)為(

面積的最小值為4;

②以為直徑的圓與x軸相切;

③記,的斜率分別為,,,則;

④過焦點Fy軸的垂線與直線分別交于點M,N,則以為直徑的圓恒過定點.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

⑴當時,求函數(shù)的極值;

⑵若存在與函數(shù),的圖象都相切的直線,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形和菱形所在的平面相互垂直,的中點.

1)求證:平面;

2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過橢圓的四個頂點與坐標軸垂直的四條直線圍成的矩形是第一象限內的點)的面積為,且過橢圓的右焦點的傾斜角為的直線過點

1)求橢圓的標準方程

2)若射線與橢圓的交點分別為.當它們的斜率之積為時,試問的面積是否為定值?若為定值,求出此定值;若不為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某村為了脫貧致富,引進了兩種麻鴨品種,一種是旱養(yǎng)培育的品種,另一種是水養(yǎng)培育的品種.為了了解養(yǎng)殖兩種麻鴨的經(jīng)濟效果情況,從中隨機抽取500只麻鴨統(tǒng)計了它們一個季度的產蛋量(單位:個),制成了如圖的頻率分布直方圖,且已知麻鴨的產蛋量在的頻率為0.66

1)求的值;

2)已知本次產蛋量近似服從(其中近似為樣本平均數(shù),似為樣本方差).若本村約有10000只麻鴨,試估計產蛋量在110~120的麻鴨數(shù)量(以各組區(qū)間的中點值代表該組的取值).

3)若以正常產蛋90個為標準,大于90個認為是良種,小于90個認為是次種.根據(jù)統(tǒng)計得出兩種培育方法的列聯(lián)表如下,請完成表格中的統(tǒng)計數(shù)據(jù),并判斷是否有99.5%的把握認為產蛋量與培育方法有關.

良種

次種

總計

旱養(yǎng)培育

160

260

水養(yǎng)培育

60

總計

340

500

附:,則,

,其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國剪紙是我國廣大勞動人民在生產與生活實踐中創(chuàng)造出來的一種平面剪刻藝術.民間剪紙藝術是我國優(yōu)秀的非物質文化遺產之一,在千百年的發(fā)展過程中,積淀了豐厚的文化歷史,取得了卓越的藝術成就.20203月發(fā)行的郵票《中國剪紙(二)》共4枚,第一枚郵票《三娘教子》(如圖1)出自“孟母教子”的故事,講述了母親通過斷織等行為教育孩子努力上進,懂得感恩.圖2是某剪紙藝術家根據(jù)第一枚郵票用一張半徑為4個單位的圓形紙片裁剪而成的《三娘教子》剪紙.為了測算圖2中有關部分的面積,在圓形區(qū)域內隨機投擲400個點,其中落入圖案上的點有225個,據(jù)此可估計剪去部分紙片的面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,當時,證明:;

2)若當時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最大值為.

(1)若關于的方程的兩個實數(shù)根為,求證:

(2)當時,證明函數(shù)在函數(shù)的最小零點處取得極小值.

查看答案和解析>>

同步練習冊答案