【題目】已知過橢圓的四個頂點與坐標(biāo)軸垂直的四條直線圍成的矩形是第一象限內(nèi)的點)的面積為,且過橢圓的右焦點的傾斜角為的直線過點

1)求橢圓的標(biāo)準(zhǔn)方程

2)若射線與橢圓的交點分別為.當(dāng)它們的斜率之積為時,試問的面積是否為定值?若為定值,求出此定值;若不為定值,說明理由.

【答案】1;(2的面積為定值

【解析】

1)根據(jù)矩形面積、直線斜率和橢圓關(guān)系可構(gòu)造方程組求得,進(jìn)而得到橢圓標(biāo)準(zhǔn)方程;

2)當(dāng)直線斜率存在時,設(shè)方程為,與橢圓方程聯(lián)立得到韋達(dá)定理的形式,利用弦長公式求得,點到直線公式求得點到直線距離,進(jìn)而表示出;根據(jù),代入韋達(dá)定理形式化簡可得,代入中化簡得到;當(dāng)直線斜率不存在時,可求得兩點坐標(biāo),進(jìn)而求得;綜合兩種情況可知為定值.

1)由題意得:,,.

直線的斜率,,

得:,橢圓的標(biāo)準(zhǔn)方程為.

2的面積為定值,理由如下:

設(shè),

①當(dāng)直線斜率存在時,設(shè)方程為.

得:,

,即

,,

又點到直線的距離,

.

,

化簡可得:,滿足,

②當(dāng)直線斜率不存在時,

可設(shè),

則點的坐標(biāo)分別為,,

此時;

綜上所述:的面積為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,若,求的取值范圍;

2)若定義在上奇函數(shù)滿足,且當(dāng)時,,求上的解析式;

3)對于(2)中的,若關(guān)于的不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點分別為,,以,,為頂點的梯形的高為,面積為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)為橢圓上的任意兩點,若直線與圓相切,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:離心率是分別是橢圓的左右焦點,過作斜率為的直線,交橢圓兩點,且三角形周長

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若直線分別交軸于不同的兩點.如果為銳角,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,短軸長為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若橢圓的左焦點為,過點的直線與橢圓交于兩點,則在軸上是否存在一個定點使得直線的斜率互為相反數(shù)?若存在,求出定點的坐標(biāo);若不存在,也請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,是等邊三角形,,,為三棱錐外一點,且為等邊三角形.

證明:;

若平面平面,平面與平面所成銳二面角的余弦值為,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在矩形中,,沿直線BD將△ABD折成,使得點在平面上的射影在內(nèi)(不含邊界),設(shè)二面角的大小為,直線 ,與平面中所成的角分別為,則(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求證:;

2)若不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)fx,若任意t∈(a1,a),使得ft)>ft+1),則實數(shù)a的取值范圍為______

查看答案和解析>>

同步練習(xí)冊答案