12.已知函數(shù)$f(x)=sin(\frac{π}{6}-2x)$,x∈[0,π],則f(x)的單調(diào)增區(qū)間為(  )
A.$[0,\frac{π}{2}]$B.$[0,\frac{π}{3}],[\frac{5π}{6},π]$C.$[\frac{π}{3},\frac{5π}{6}]$D.$[\frac{π}{2},π]$

分析 由條件利用誘導(dǎo)公式化簡函數(shù)的解析式,再利用正弦函數(shù)的單調(diào)性求得f(x)的單調(diào)增區(qū)間.

解答 解:函數(shù)$f(x)=sin(\frac{π}{6}-2x)$=-sin(2x-$\frac{π}{6}$),x∈[0,π],令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,
求得kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,故函數(shù)的增區(qū)間為[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$],k∈Z.
結(jié)合x∈[0,π],可得函數(shù)f(x)的增區(qū)間為[$\frac{π}{3}$,$\frac{5π}{6}$],
故選:C.

點評 本題主要考查誘導(dǎo)公式,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.“(2x-1)x=0”是“x=0”的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列各圖中,不可能表示函數(shù)y=f(x)的圖象的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若全集U=R,集合M={x|x2>4},N={x|$\frac{3-x}{x+1}$>0},則M∩(∁UN)等于( 。
A.{x|x<-2}B.{x|x<-2}或x≥3}C.{x|x≥32}D.{x|-2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.當(dāng)x∈$[\frac{π}{6},\frac{7π}{6}]$時,求函數(shù)y=3-sinx-2cos2x的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在等差數(shù)列{an}中,若a13=20,a20=13,則a2014=-1981.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.方程${log_{\frac{1}{2}}}x={2^x}-2016$的實數(shù)根的個數(shù)為( 。
A.0B.1C.2D.無數(shù)個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an}的公差d>0,其前n項和為Sn,若S3=12,且2a1,a2,1+a3成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)記bn=$\frac{1}{{a}_{n}{a}_{n+1}}$(n∈N*),且數(shù)列{bn}的前n項和為Tn,證明:$\frac{1}{4}$≤Tn<$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$\frac{{x}^{2}}{4}$+y2=1的左右焦點分別為F1,F(xiàn)2,P為橢圓上任意一點.
求(1)PF1,•PF2的最大值(最小值).
(2)${PF}_{1}^{2}{+PF}_{2}^{2}$的最小值.
(3)∠F1PF2的最大值.
(4)PF1的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案