6.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow$,g(x)=|$\overrightarrow{a}+\overrightarrow$|,則下列性質(zhì)正確的是(  )
A.函數(shù)f(x)的最小正周期為2πB.函數(shù)g(x)為奇函數(shù)
C.函數(shù)f(x)在[0.π]遞減D.函數(shù)g(x)的最大值為2

分析 利用三角函數(shù)的恒等變換和向量的數(shù)量積公式求出f(x)和g(x)的解析式,利用余弦函數(shù)的性質(zhì)進行判斷.

解答 解:f(x)=$\overrightarrow{a}•\overrightarrow$=cos$\frac{3}{2}$xcos$\frac{x}{2}$-sin$\frac{3}{2}$xsin$\frac{x}{2}$=cos2x,
∴f(x)的最小正周期為$\frac{2π}{2}$=π,故A錯誤.
∵f(0)=1,f(π)=1,∴f(x)在[0,π]上不單調(diào),故C錯誤.
∵$\overrightarrow{a}+\overrightarrow$=(cos$\frac{3}{2}$x+cos$\frac{x}{2}$,sin$\frac{3}{2}$x-sin$\frac{x}{2}$),
∴($\overrightarrow{a}+\overrightarrow$)2=(cos$\frac{3}{2}$x+cos$\frac{x}{2}$)2+(sin$\frac{3}{2}$x-sin$\frac{x}{2}$)2=2+2cos$\frac{3}{2}$xcos$\frac{x}{2}$-2sin$\frac{3}{2}$xsin$\frac{x}{2}$=2+2cos2x.
∴g(x)=$\sqrt{2+2cos2x}$,
∴g(x)是偶函數(shù),故B錯誤.
當(dāng)cos2x=1時,g(x)取得最大值2.故D正確.
故選:D.

點評 本題考查了平面向量的數(shù)量積運算,三角函數(shù)的恒等變換,余弦函數(shù)的圖象與性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)f(x)是R上的偶函數(shù),并且在[0,+∞)上單調(diào)遞減,則f(-1),f(-3),f(5)的大小順序是( 。
A.f(-1)>f(-3)>f(5)B.f(-1)>f(5)>f(-3)C.f(5)>f(-1)>f(-3)D.f(-3)>f(-1)>f(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知A(2,4)、B(-4.,6),若$\overrightarrow{AC}$=$\frac{3}{2}$$\overrightarrow{AB}$,$\overrightarrow{BD}$=$\frac{4}{3}$$\overrightarrow{BA}$,則$\overrightarrow{CD}$的坐標(biāo)為(11,-$\frac{11}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)<$\overrightarrow{a}$,$\overrightarrow$>=θ,$\overrightarrow{a}$=(2,1),且$\overrightarrow{a}$+2$\overrightarrow$=(4,5),則cosθ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知sinθ+cosθ=$\frac{7}{13}$,π<θ<2π,那么tanθ=$-\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.己知集合A={x∈N|$\frac{1}{8}$<2x≤4},B={x|x=3n+3,n∈Z},則集合A∩B中的元素個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知A(5,-2),B(-5,-1),且$\overrightarrow{AP}$=$\frac{1}{2}$$\overrightarrow{AB}$,則P點坐標(biāo)是(0,-$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知正數(shù)x,y滿足x+y=1,則$\frac{4x+y}{xy}$的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AB1,BC1的中點,則以下結(jié)論中不成立的是③.(填序號)
①EF與CC1垂直;②EF與BD垂直;③EF與A1C1異面;④EF與AD1異面.

查看答案和解析>>

同步練習(xí)冊答案