1.已知sinθ+cosθ=$\frac{7}{13}$,π<θ<2π,那么tanθ=$-\frac{5}{12}$.

分析 由sinθ+cosθ=$\frac{7}{13}$,求出sinθ-cosθ是,求出正弦函數(shù)與余弦函數(shù)值,即可得出tanθ.

解答 解:∵sinθ+cosθ=$\frac{7}{13}$,π<θ<2π,
∴(sinθ+cosθ)2=$\frac{49}{169}$,∴sin2θ+cos2θ+2sinθcosθ=$\frac{49}{169}$,∴sinθcosθ=-$\frac{60}{169}$.
∵π<θ<2π,∴sinθ<0<cosθ.
∴sinθ-cosθ=$\sqrt{si{n}^{2}θ+co{s}^{2}θ-2sinθcosθ}$=-$\sqrt{1+\frac{120}{169}}$=-$\frac{17}{13}$.
∴cosθ=$\frac{12}{13}$,sinθ=-$\frac{5}{13}$
∵tanθ=$\frac{sinθ}{cosθ}$=$\frac{-\frac{5}{13}}{\frac{12}{13}}$=-$\frac{5}{12}$.
故答案為:-$\frac{5}{12}$.

點(diǎn)評(píng) 本題考查了三角函數(shù)的基本關(guān)系式、“弦化切”方法、正弦余弦函數(shù)的單調(diào)性,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績和物理成績之間的關(guān)系,隨機(jī)抽取高二年級(jí)20名學(xué)生某次考試成績(百分制)如表所示:
序號(hào)1234567891011121314151617181920
數(shù)學(xué)成績9575809492656784987167936478779057837283
物理成績9063728791715882938177824885699161847886
若數(shù)學(xué)成績90分(含90分)以上為優(yōu)秀,物理成績85(含85分)以上為優(yōu)秀.有多少把握認(rèn)為學(xué)生的數(shù)學(xué)成績與物理成績之間有關(guān)系( 。
A.99.5%B.99.9%C.97.5%D.95%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知無窮數(shù)列{an}的通項(xiàng)公式為an=$\frac{n}{2n+1}$,從第250項(xiàng)開始,各項(xiàng)與$\frac{1}{2}$的差的絕對(duì)值都小于0.001.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)方程x2+y2+2$\sqrt{3}$x-ay-2a=0表示圓,實(shí)數(shù)a的取值范圍是(-∞,-6)∪(-2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若不等式組$\left\{\begin{array}{l}{x-y+2≥0}\\{ax+y-2≤0}\\{y≥0}\end{array}\right.$表示的平面區(qū)域的面積為3,則實(shí)數(shù)a的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow$,g(x)=|$\overrightarrow{a}+\overrightarrow$|,則下列性質(zhì)正確的是( 。
A.函數(shù)f(x)的最小正周期為2πB.函數(shù)g(x)為奇函數(shù)
C.函數(shù)f(x)在[0.π]遞減D.函數(shù)g(x)的最大值為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若三點(diǎn)A(-2,-2),B(0,m),C(n,0)(mn≠0)共線,則$\frac{1}{m}$+$\frac{1}{n}$的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}中,a1=3,an+1=-$\frac{1}{{a}_{n}+1}$(n∈N*),能使an=3的n可以等于( 。
A.14B.15C.16D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示,已知正四棱錐S-ABCD,E、F分別是側(cè)棱SA、SC的中點(diǎn).求證:
(1)EF∥平面ABCD;
(2)EF⊥平面SBD.

查看答案和解析>>

同步練習(xí)冊(cè)答案