11.如圖,四棱錐P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,PA=CD=AD=2AB=2,PA⊥底面ABCD,E是PC的中點(diǎn).
(1)求證:BE∥面PAD;
(2)求直線BE與平面PAB所成角的正弦值.

分析 (1)利用三角形的中位線定理、平行四邊形的判定與性質(zhì)定理及線面平行的判定定理即可證明;
(2)由BE∥AM,可得直線BE與平面PAB所成角的正弦值=直線MA與平面PAB所成角的正弦值=sin∠PAM.

解答 (1)證明:取PD的中點(diǎn)為M,連接ME,MA,
∵E是PC的中點(diǎn),∴ME是△PCD的中位線.
∴ME∥CD,ME=$\frac{1}{2}$CD.
又∵AB∥CD,2AB=CD,
∴ME∥AB,且ME=AB.
∴四邊形MEBA是平行四邊形,
∴BE∥AM.
∵BE?平面PAD,AM?平面PAD,
∴BE∥平面PAD.
(2)解:直線BE與平面PAB所成角的正弦值=直線MA與平面PAB所成角的正弦值=sin∠PAM,
∵PA⊥底面ABCD,PA=DA,M是PD的中點(diǎn),
∴∠PAM=45°,
∴sin∠PAM=$\frac{\sqrt{2}}{2}$.

點(diǎn)評 本題考查的知識點(diǎn)是直線與平面所成的角,直線與平面平行的判定,熟練掌握線面平行的判定定理是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知復(fù)數(shù)z滿足(1+2i)$\overline{z}$=4+3i.
(1)求復(fù)數(shù)z;
(2)若復(fù)數(shù)(z+ai)2在復(fù)平面上對應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某幾何體的三視圖如圖所示,俯視圖為等腰梯形,則該幾何體的表面積是( 。
A.$\frac{9}{2}$B.9+3$\sqrt{5}$C.18D.12+3$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\sqrt{lo{g}_{\frac{1}{3}}(x-2)}$的定義域?yàn)锳,函數(shù)g(x)=($\frac{1}{2}$)x(x≥-2)的值域?yàn)锽.
(1)求(∁RA)∩B;
(2)若集合C={x|a≤x≤2a-2}且A∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知0<α<π,則tanα>1是sinα>cosα的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=cosx•sin(x+$\frac{π}{6}$),則函數(shù)f(x)的最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某校高二成立3個(gè)社團(tuán),有4名同學(xué),每人只選一個(gè)社團(tuán),恰有1個(gè)社團(tuán)沒有同學(xué)選,共有42 種不同參加方案(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x-a},x≤a}\\{-{x}^{2}+2ax-{a}^{2}+2a,x>a}\end{array}\right.$(a>0且a≠1)在其定義域內(nèi)單調(diào),則實(shí)數(shù)a的取值范圍為( 。
A.(0,$\frac{1}{2}$)B.(0,$\frac{1}{2}$]C.($\frac{1}{2}$,1)D.[$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ex+ax-1(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)記函數(shù)f(x)的導(dǎo)數(shù)為f′(x),證明:對任意a∈R,給定x1,x2且x1<x2存在x0∈(x1,x2),使得f′(x0)=$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$.

查看答案和解析>>

同步練習(xí)冊答案