解不等式:x2-2|x|-3<0.
考點(diǎn):絕對(duì)值不等式的解法
專題:不等式的解法及應(yīng)用
分析:先分解因式求出|x|的解集,然后再解不等式組的解集.
解答: 解:原不等式化為:|x|2-2|x|-3<0.
即(|x|+1)(|x|-3)<0,∵|x|+1>0
∴|x|<3,
∴原不等式的解為-3<x<3.
點(diǎn)評(píng):本題主要考查了含絕對(duì)值不等式的解法問題,關(guān)鍵把|x|看作一個(gè)整體,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A是三角形ABC的內(nèi)角,則“sinA=
3
2
”是“cosA=
1
2
”的( 。
A、必要不充分條件
B、充分不必要條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,n),
b
=(-1,n)
,若
a
b
,則|
a
|
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)為適應(yīng)市場(chǎng)需求,準(zhǔn)備投入資金20萬(wàn)生產(chǎn)W和R型兩種產(chǎn)品.經(jīng)市場(chǎng)預(yù)測(cè),生產(chǎn)W型產(chǎn)品所獲利潤(rùn)yw(萬(wàn)元)與投入資金xw(萬(wàn)元)成正比例關(guān)系,又估計(jì)當(dāng)投入資金6萬(wàn)元時(shí),可獲利潤(rùn)1.5萬(wàn)元.生產(chǎn)R型產(chǎn)品所獲利潤(rùn)yR(萬(wàn)元)與投入資金xR(萬(wàn)元)的關(guān)系滿足yR=
5
4
xR
,為獲得最大利潤(rùn),問生產(chǎn)W,R型兩種產(chǎn)品各應(yīng)投入資金多少萬(wàn)元?獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若U={1,2,3,4,5,6,7},A={3,4,6,7},B={3,5,6,7},則∁U(A∩B)=( 。
A、{1,2,4,5}
B、{2,6,8}
C、{1,3,5,7}
D、{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x、y滿足不等式組
x+y-2≥0
y≤2
x≤2

(1)求x2+y2的最小值;
(2)求z=
x-y
x+y
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

AB為拋物線y2=2px(p>0)的過焦點(diǎn)F(
p
2
,0)
的弦,若A(x1,y1),B(x2,y2),則
y1y2
x1x2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=a(x2-x)(a≠0,a∈R),h(x)=f(x)-g(x).
(1)若a=1,求函數(shù)h(x)的極值;
(2)若函數(shù)y=h(x)在[1,+∞)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(3)在函數(shù)y=f(x)的圖象上是否存在不同的兩點(diǎn)A(x1,y1)、B(x2,y2),使線段AB的中點(diǎn)的橫坐標(biāo)x0與直線AB的斜率k之間滿足k=f′(x0)?若存在,求出x0;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且bsinA=
3
acosB.
(1)求角B;
(2)若a=1,SABC=
3
,求b.

查看答案和解析>>

同步練習(xí)冊(cè)答案