【題目】求所有的實數(shù)組(a、b、c),使得對任何整數(shù)n,都有.其中,表示不超過實數(shù)x的最大整數(shù).
【答案】見解析
【解析】
首先證明:“使對任何整數(shù)n,都有”等價于“a、b中至少有一個為整數(shù),且c=a+b”.
一方面,若a、b中至少有一個為整數(shù),且c=a+b,則不妨設a為整數(shù).那么,對任何整數(shù)n,na為整數(shù).所以,.
于是, .
另一方面,若對任何整數(shù)n,都有.則分別取n=1、-1,
得,
兩式相加得.
又對任何實數(shù)x,
于是,如果a、b都不是整數(shù),則
故,矛盾.
所以,a、b中至少有一個為整數(shù).
不妨設a為整數(shù),那么,對任何整數(shù)n,na為整數(shù),于是,.
則對任何整數(shù)n,.
即.
故
而
于是,.
綜上,所求的實數(shù)組,,
其中,m、n為任意整數(shù),t為任意實數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】一個半徑為r的小球與一個半徑為R的大球在一個內(nèi)壁棱長為l的正四面體容器內(nèi)向各個方向自由運動。若,則該小球永遠不可能接觸到的容器內(nèi)壁的面積是_________。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
如圖,四棱錐的底面為菱形,平面,,
分別為的中點,.
(Ⅰ)求證:平面平面.
(Ⅱ)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中裝著10個外形完全相同的小球,其中標有數(shù)字1的小球有1個,標有數(shù)字2的小球有2個,標有數(shù)字3的小球有3個,標有數(shù)字4的小球有4個.
現(xiàn)從袋中任取3個小球,按3個小球上最大數(shù)字的8倍計分,每個小球被取出的可能性都相等,用表示取出的三個小球上的最大數(shù)字,求:
(1)取出的3個小球上的數(shù)字互不相同的概率;
(2)隨機變量的分布列;
(3)計算介于20分到40分之間的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,銳角的三邊互不相等,其垂心為,是邊的中點,直線,的外接圓交的外接圓于,直線與的外接圓、的外接圓分別交于證明:
(1)平分;
(2)三線共點。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的頂點在原點,過點A(-4,4)且焦點在x軸.
(1)求拋物線方程;
(2)直線l過定點B(-1,0)與該拋物線相交所得弦長為8,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:如果函數(shù)的導函數(shù)為,在區(qū)間上存在,使得,,則稱為區(qū)間上的“雙中值函數(shù)“已知函數(shù)是上的“雙中值函數(shù)“,則實數(shù)m的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是某公司一種產(chǎn)品的日銷售量(單位:百件)關于日最高氣溫(單位:)的散點圖.
數(shù)據(jù):
13 | 15 | 19 | 20 | 21 | |
26 | 28 | 30 | 18 | 36 |
(1)請?zhí)蕹唤M數(shù)據(jù),使得剩余數(shù)據(jù)的線性相關性最強,并用剩余數(shù)據(jù)求日銷售量關于日最高氣溫的線性回歸方程;
(2)根據(jù)現(xiàn)行《重慶市防暑降溫措施管理辦法》.若氣溫超過36度,職工可享受高溫補貼.已知某日該產(chǎn)品的銷售量為53.1,請用(1)中求出的線性回歸方程判斷該公司員工當天是否可享受高溫補貼?
附:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果既約分數(shù)滿足:(、為正整數(shù)),則稱為“牛分數(shù)”.現(xiàn)將所有的牛分數(shù)按遞增順序排成一個數(shù)列,稱為“牛數(shù)列”.證明:對于牛數(shù)列中的任兩個相鄰項、,都滿足.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com