17.已知tanα=2
(1)求$\frac{3sinα-2cosα}{sinα-cosα}$的值;
(2)若α是第三象限角,求cosα的值.

分析 (1)由已知利用同角三角函數(shù)基本關系式即可計算得解.
(2)由已知利用同角三角函數(shù)基本關系式,結合cosα<0,可求cosα的值.

解答 解:(1)因為tanα=2,
所以$\frac{3sinα-2cosα}{sinα-cosα}=\frac{3tanα-2}{tanα-1}=\frac{3×2-2}{2-1}=4$
(2)解法1:由$\frac{sinα}{cosα}$=tanα=2,得sinα=2cosα,又sin2α+cos2α=1,
故5cos2α=1,即cos2α=$\frac{1}{5}$,因為α是第三象限角,cosα<0,所以cosα=-$\frac{\sqrt{5}}{5}$.
解法2:因為cos2α=$\frac{co{s}^{2}α}{co{s}^{2}α+si{n}^{2}α}$=$\frac{1}{1+ta{n}^{2}α}$=$\frac{1}{1+{2}^{2}}$=$\frac{1}{5}$,
又因為α是第三象限角,所以cosα<0,
所以cosα=-$\frac{\sqrt{5}}{5}$.

點評 本題主要考查了同角三角函數(shù)基本關系式在三角函數(shù)化簡求值中的應用,考查了轉化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知復數(shù)z滿足|z+2-i|=1,則|2z-1|的取值范圍是$[\sqrt{29}-2,\sqrt{29}+2]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設m是常數(shù),若點F(5,0)是雙曲線$\frac{{y}^{2}}{m}$+$\frac{{x}^{2}}{9}$=1的一個焦點,則m=-16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.等比數(shù)列{an}中,a2,a6是方程x2-34x+81=0的兩根,則a4等于( 。
A.9B.-9C.±9D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知棱長為l的正方體ABCD-A1B1C1D1中,E,F(xiàn),M分別是AB、AD、AA1的中點,又P、Q分別在線段A1B1,A1D1上,且A1P=A1Q=x,0<x<1,設面MEF∩面MPQ=l,則下列結論中不成立的是( 。
A.l∥面ABCDB.l⊥AC
C.面MEF與面MPQ垂直D.當x變化時,l是定直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下面程序框圖中,若輸入互不相等的三個正實數(shù)a,b,c(abc≠0),要求判斷△ABC的形狀,則空白的判斷框應填入( 。
A.a2+b2>c2?B.a2+c2>b2C.b2+c2>a2?D.b2+a2=c2?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若復數(shù)z滿足(1+i)z=|$\sqrt{3}$+i|,則在復平面內(nèi),z對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已經(jīng)等差數(shù)列{an}的前n項和為Sn,S9>0,S8<0,則使得Sn取得最小值的n為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,四棱錐P-ABCD中,底面ABCD是∠DAB且邊長為a的菱形,側面PAD是等邊三角形,且平面PAD⊥底面ABCD.
(1)若G為AD的中點,求證:BG⊥平面PAD;
(2)求二面角A-BC-P的大小.

查看答案和解析>>

同步練習冊答案