分析 (1)由已知利用同角三角函數(shù)基本關系式即可計算得解.
(2)由已知利用同角三角函數(shù)基本關系式,結合cosα<0,可求cosα的值.
解答 解:(1)因為tanα=2,
所以$\frac{3sinα-2cosα}{sinα-cosα}=\frac{3tanα-2}{tanα-1}=\frac{3×2-2}{2-1}=4$
(2)解法1:由$\frac{sinα}{cosα}$=tanα=2,得sinα=2cosα,又sin2α+cos2α=1,
故5cos2α=1,即cos2α=$\frac{1}{5}$,因為α是第三象限角,cosα<0,所以cosα=-$\frac{\sqrt{5}}{5}$.
解法2:因為cos2α=$\frac{co{s}^{2}α}{co{s}^{2}α+si{n}^{2}α}$=$\frac{1}{1+ta{n}^{2}α}$=$\frac{1}{1+{2}^{2}}$=$\frac{1}{5}$,
又因為α是第三象限角,所以cosα<0,
所以cosα=-$\frac{\sqrt{5}}{5}$.
點評 本題主要考查了同角三角函數(shù)基本關系式在三角函數(shù)化簡求值中的應用,考查了轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 9 | B. | -9 | C. | ±9 | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | l∥面ABCD | B. | l⊥AC | ||
C. | 面MEF與面MPQ垂直 | D. | 當x變化時,l是定直線 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a2+b2>c2? | B. | a2+c2>b2? | C. | b2+c2>a2? | D. | b2+a2=c2? |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com