分析 (1)根據(jù)公式cos$<\overrightarrow{a,}\overrightarrow>$=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$求解即可
(2)求解$\overrightarrow{a}$$•\overrightarrow$=$\sqrt{2}×1×\frac{\sqrt{2}}{2}$=1,利用向量的模計(jì)算方法|$\overrightarrow a$-$\overrightarrow b$|=$\sqrt{(\overrightarrow{a}-\overrightarrow)^{2}}$求解.
解答 解:(1)∵|$\overrightarrow a$|=$\sqrt{2}$,|$\overrightarrow b$|=1.$\overrightarrow a$•$\overrightarrow b$=1,
∴cos$<\overrightarrow{a,}\overrightarrow>$=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$=$\frac{1}{\sqrt{2}×1}$=$\frac{\sqrt{2}}{2}$,
∵$\overrightarrow a$與$\overrightarrow b$的夾角的范圍為[0,π],
∴$\overrightarrow a$與$\overrightarrow b$的夾角為:$\frac{π}{4}$,
(2)∵$\overrightarrow a$與$\overrightarrow b$的夾角θ為45°,
∴$\overrightarrow{a}$$•\overrightarrow$=$\sqrt{2}×1×\frac{\sqrt{2}}{2}$=1,
∴|$\overrightarrow a$-$\overrightarrow b$|=$\sqrt{(\overrightarrow{a}-\overrightarrow)^{2}}$=$\sqrt{2+1-2×1}$=1.
點(diǎn)評 本題考查數(shù)量積表示兩個(gè)向量的夾角,向量的數(shù)量積公式、向量模的性質(zhì):向量模的平方等于向量的平方,學(xué)生的計(jì)算能力,比較基礎(chǔ).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $C_{12}^4C_8^4C_4^4$ | B. | $3C_{12}^4C_8^4C_4^4$ | ||
C. | $C_{12}^4C_8^4A_3^3$ | D. | $\frac{{C_{12}^4C_8^4C_4^4}}{A_3^3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,3] | B. | (0,2)∪(2,$\frac{4\sqrt{3}}{3}$] | C. | (0,$\frac{4\sqrt{3}}{3}$] | D. | (2,$\frac{4\sqrt{3}}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com