1.已知點(diǎn)$M({-6,3\sqrt{5}})$在雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的漸近線上,C的焦距為12,則C的方程為( 。
A.$\frac{x^2}{8}-\frac{y^2}{10}=1$B.$\frac{x^2}{10}-\frac{y^2}{8}=1$C.$\frac{x^2}{16}-\frac{y^2}{20}=1$D.$\frac{x^2}{20}-\frac{y^2}{16}=1$

分析 由題意可得c=6,即有a2+b2=36,求出雙曲線的漸近線方程為y=±$\frac{a}$x,可得a,b關(guān)系式,解方程可得a,b,進(jìn)而得到所求雙曲線的方程.

解答 解:雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦距為12,
可得2c=12,即c=6,即有a2+b2=36,
雙曲線的漸近線方程為y=±$\frac{a}$x,
由題意點(diǎn)$M({-6,3\sqrt{5}})$在雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的漸近線上,
可得3$\sqrt{5}$=$\frac{a}×6$,即$\sqrt{5}$a=2b,
解得a=4,b=2$\sqrt{5}$,
可得雙曲線的方程為 $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{20}$=1.
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的方程的求法,注意運(yùn)用雙曲線的漸近線方程和基本量的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.化簡(jiǎn)$\frac{cos(\frac{π}{2}+α)sin(π-α)}{cos(\frac{11}{2}-α)sin(\frac{9π}{2}+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)數(shù)列{an}滿足,${a_n}=1+\frac{1}{{{a_{n-1}}}}(n>1)$,${a_5}=\frac{8}{5}$,則a1=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知圓E:x2+(y-$\frac{1}{2}$)2=$\frac{9}{4}$經(jīng)過橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)F1,F(xiàn)2,與橢圓C在第一象限的交點(diǎn)為A,且F1,E,A三點(diǎn)共線.
(1)求橢圓C的方程;
(2)設(shè)與直線OA(O為原點(diǎn))平行的直線l交橢圓C于M,N兩點(diǎn).
使 $\overrightarrow{OM}•\overrightarrow{ON}=-\frac{3}{2}$,若存在,求直線l的方程,不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.從{1,2,3,4,…,50}中任取5個(gè)數(shù)(可以相同),則取到合數(shù)的個(gè)數(shù)的數(shù)學(xué)期望為$\frac{17}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知隨機(jī)變量ξ服從正態(tài)分布N(2,σ2),P(ξ≤4)=0.66,則P(ξ≤0)=(  )
A.0.16B.0.34C.0.68D.0.84

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=mlnx+8x-x2在[3,+∞)上單調(diào)遞減,則實(shí)數(shù)m的取值范圍為( 。
A.(-∞,-8)B.(-∞,-8]C.(-∞,-6)D.(-∞,-6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.定義在R上的函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈(-1,1]時(shí),f(x)=x2,g(x)=$\left\{\begin{array}{l}{log_3}(x-1),x>1\\{2^x},x≤1\end{array}$,那么函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]上零點(diǎn)的個(gè)數(shù)為( 。
A.9B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)i為虛數(shù)單位,若2+ai=b-3i(a、b∈R),則a+bi=-3+2i.

查看答案和解析>>

同步練習(xí)冊(cè)答案