6.已知f(x)是定義在R上的奇函數(shù),當(dāng)x∈(0,+∞)時(shí),f(x)=-x(x+1).若f(m2-m)>f(2),則m的取值范圍是(-1,2).

分析 根據(jù)條件判斷函數(shù)的單調(diào)性,利用函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進(jìn)行轉(zhuǎn)化求解即可.

解答 解:當(dāng)x>0時(shí),f(x)=-x(x+1)=-x2-x=-(x+$\frac{1}{2}$)2+$\frac{1}{4}$,此時(shí)函數(shù)f(x)為減函數(shù),
∵f(x)是定義在R上的奇函數(shù),∴f(x)在(-∞,0]上也是減函數(shù),
即函數(shù)f(x)在R上是減函數(shù),
則不等式f(m2-m)>f(2),等價(jià)為m2-m<2,
即m2-m-2<0,得-1<m<2,
即實(shí)數(shù)m的取值范圍是(-1,2),
故答案為:(-1,2)

點(diǎn)評(píng) 本題主要考查不等式的求解,根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知f(x)=ex-2ax,g(π)=-ax-b,其中a>0,設(shè)兩函數(shù)y=f(x)與y=g(x)的圖象有公共點(diǎn),且在該點(diǎn)處相切.
(1)用a表示b;
(2)試證明不等式f(x)≥g(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知Sn為等差數(shù)列{an}的前n項(xiàng)和,若a2+a5+a8=15,那么S9=( 。
A.40B.45C.50D.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.經(jīng)過(guò)原點(diǎn)并且與直線(xiàn)x+y-2=0相切于點(diǎn)(2,0)的圓的標(biāo)準(zhǔn)方程是( 。
A.(x-1)2+(y+1)2=2B.(x+1)2+(y-1)2=2C.(x-1)2+(y+1)2=4D.(x+1)2+(y-1)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知O為△ABC的外心,點(diǎn)M(不與點(diǎn)O重合)為邊AC的中點(diǎn),且$\overrightarrow{AO}$=x•$\overrightarrow{AB}$+y•$\overrightarrow{AM}$,|AB|=3,|AC|=4,若x+y=1,則cos∠BAC=( 。
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若cos$\frac{α}{2}$=$\frac{2}{3}$,則cosα的值等于-$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)y=-cosx-1的最大值是( 。
A.1B.0C.2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.將下列指數(shù)式化為對(duì)數(shù)式,對(duì)數(shù)式化為指數(shù)式:
(1)102=100;
(2)lna=b;
(3)73=343;
(4)log6$\frac{1}{36}$=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知兩定點(diǎn)M(-1,0),N(1,0),若直線(xiàn)上存在點(diǎn)P,使得|PM|+|PN|=4,則稱(chēng)該直線(xiàn)為“A型直線(xiàn)”,給出下列直線(xiàn),其中是“A型直線(xiàn)”的有(  )
①y=x+1;②y=2;③y=-x+3;④y=-2x+3.
A.②④B.①④C.①③D.③④

查看答案和解析>>

同步練習(xí)冊(cè)答案