分析 (1)由題意可得:2A=B+C,又A+B+C=180°,可得A=60°.由余弦定理可知:a2=b2+c2-2bccos60°,解出c,可得|AO|,|BO|,即可得出S△ABC.
(2)T=60,可得$ω=\frac{π}{30}$.f(-10)=Msin$[\frac{π}{30}×(-10)+φ]$=0,可得φ.
解答 解:(1)在△ABC中,三個(gè)內(nèi)角B、A、C成等差數(shù)列,
∴2A=B+C,又A+B+C=180°,∴A=60°.
由余弦定理可知:a2=b2+c2-2bccos60°,
∴c2-20c-500=0,解得c=10+10$\sqrt{6}$.
又∵|AO|=20cos60°=10,∴|BO|=10$\sqrt{6}$.
∴S△ABC=$\frac{1}{2}×(10+10\sqrt{6})$×$10\sqrt{3}$=50$(3\sqrt{2}+\sqrt{3})$.
(2)T=2×(20+10)=60,
∴$ω=\frac{π}{30}$.
∵f(-10)=Msin$[\frac{π}{30}×(-10)+φ]$=0,
∴sin$(-\frac{π}{3}+φ)$=0,
∴-$\frac{π}{3}$+φ=kπ,k∈Z,|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{3}$.
∵f(0)=Msin$\frac{π}{3}$=10$\sqrt{3}$,解得M=20,
∴f(x)=20sin$(\frac{π}{30}x+\frac{π}{3})$.
點(diǎn)評(píng) 本題考查了解三角形、余弦定理、三角函數(shù)的圖象與性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 10 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “?x∈R,x2-x≤0”的否定是“?x∈R,x2-x≥0” | |
B. | “p∧q為真”是“p∨q為真”的必要不充分條件 | |
C. | “若am2≤bm2,則a≤b”的否命題為真 | |
D. | ?x∈R,sin2$\frac{x}{2}$+cos2$\frac{x}{2}$=$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4α+1>4β+2 | B. | ${log_{\frac{1}{2}}}2α<{log_{\frac{1}{2}}}2β$ | ||
C. | (α+1)3>β3 | D. | α=β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com