19.已知數(shù)列{an}的首項(xiàng)為2,且數(shù)列{an}滿足${a_{n+1}}=\frac{{{a_n}-1}}{{{a_n}+1}}$,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,則S2017=( 。
A.-586B.-588C.-590D.-504

分析 a1=2,${a_{n+1}}=\frac{{{a_n}-1}}{{{a_n}+1}}$⇒${a}_{2}=\frac{{a}_{1}-1}{{a}_{1}+1}=\frac{1}{3}$,${a}_{3}=\frac{{a}_{2}-1}{{a}_{2}+1}=-\frac{1}{2}$,${a}_{4}=\frac{{a}_{3}-1}{{a}_{3}+1}=-3$,${a}_{5}=\frac{{a}_{4}-1}{{a}_{4}+1}=2$…可得數(shù)列{an}是周期為4的周期數(shù)列,即可求解.

解答 解:∵a1=2,${a_{n+1}}=\frac{{{a_n}-1}}{{{a_n}+1}}$,∴${a}_{2}=\frac{{a}_{1}-1}{{a}_{1}+1}=\frac{1}{3}$,${a}_{3}=\frac{{a}_{2}-1}{{a}_{2}+1}=-\frac{1}{2}$,${a}_{4}=\frac{{a}_{3}-1}{{a}_{3}+1}=-3$,
${a}_{5}=\frac{{a}_{4}-1}{{a}_{4}+1}=2$…可得數(shù)列{an}是周期為4的周期數(shù)列.
S2017=$504×(2+\frac{1}{3}-\frac{1}{2}-3)+2=-586$,
故選:A.

點(diǎn)評(píng) 本題考查了數(shù)列的遞推式,考查了歸納推理能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{2}{x-1}$(x∈(1,5])
(1)證明函數(shù)的單調(diào)性,
(2)求函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)是定義在(-∞,+∞)上的奇函數(shù),若對(duì)于任意的實(shí)數(shù)x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2)時(shí),f(x)=log2(x+1),則f(-2 017)+f(2 018)的值為(  )
A.-1B.-2C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若雙曲線C的一條漸近線為x+2y=0,且雙曲線與拋物線x2=y的準(zhǔn)線僅有一個(gè)公共點(diǎn),則此雙曲線C的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{\frac{1}{16}}$-$\frac{{x}^{2}}{\frac{1}{4}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=ex-1-a(x+1)(x≥1),g(x)=(x-1)lnx,其中e為自然對(duì)數(shù)的底數(shù).
(1)若f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
(2)若在(1)的條件下,當(dāng)a取最大值時(shí),求證:f(x)≥g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.(x3+2)(1+$\frac{1}{x}$)5的展開式中的常數(shù)項(xiàng)是   12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.將函數(shù)f(x)=sin(2x+$\frac{π}{3}$)的圖象向右平移m個(gè)單位(m>0),若所得圖象對(duì)應(yīng)的函數(shù)為偶函數(shù),則m的最小值是$\frac{5π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在平面四邊形ABCD中,若AB=3,AC=4,cos∠CAB=$\frac{1}{3}$,AD=4sin∠ACD,則BD的最大值為( 。
A.$\sqrt{13}$B.4C.$\sqrt{17}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,已知AB=2,cosB=$\frac{1}{3}$
(Ⅰ)若AC=2$\sqrt{2}$,求sinC的值;
(Ⅱ)若點(diǎn)D在邊AC上,且AD=2DC,BD=$\frac{4}{3}$$\sqrt{3}$,求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案