8.已知A是函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<2π)圖象上的一個(gè)最高點(diǎn),B,C是f(x)圖象上相鄰的兩個(gè)對(duì)稱中心,且△ABC的面積為$\frac{1}{2}$,若存在常數(shù)M(M>0),使得f(x+M)=Mf(-x),則該函數(shù)的解析式是f(x)=-sinπx.

分析 由題意可得A的縱坐標(biāo)為1,再根據(jù)△ABC的面積為$\frac{1}{2}$,求得ω=π,再根據(jù)存在常數(shù)M(M>0),使得f(x+M)=Mf(-x),求得φ,可得函數(shù)的解析式.

解答 解:由題意可得A的縱坐標(biāo)為1,BC=$\frac{1}{2}$•$\frac{2π}{ω}$=$\frac{π}{ω}$,△ABC的面積為$\frac{1}{2}$•$\frac{π}{ω}$•1=$\frac{1}{2}$,
∴ω=π,f(x)=sin(πx+φ).
∵存在常數(shù)M(M>0),使得f(x+M)=Mf(-x),即sin(πx+Mπ+φ)=Msin(-πx+φ),
∴M=1,φ=π,∴f(x)=sin(πx+π)=-sinπx,
故答案為:-sinπx.

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的圖象,正弦函數(shù)的圖象的對(duì)稱性,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.等比數(shù)列{an}中,a3=$\frac{3}{2}$,S3=$\frac{9}{2}$.
(1)求數(shù)列的公比q;
(2)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=2,且滿足3Sn+4an-1=5an+3Sn-1(n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{{a}_{n}}{{(a}_{n}+1){(a}_{n+1}+1)}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線mx2+ny2=1(mn<0)的一條漸近線方程為y=2x,此雙曲線上的點(diǎn)(x0,y0)滿足${y}_{0}^{2}$>4${x}_{0}^{2}$,則該雙曲線的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=sinx+sin(x+$\frac{π}{3}$),x∈R.
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)x1,x2∈[-$\frac{π}{6}$,$\frac{5π}{6}$],若f(x1)=f(x2)(x1≠x2),求f(x1+x2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如果直線mx+2y-2=0的斜率為-2,則m的值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知x≤1,比較3x3與3x2-x+1的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)全集U=R,集合A={x|-1<x<2},A∩(∁UB)={x|1<x<2},則集合B可以是( 。
A.{x|-2<x<2}B.{x|-1<x<1}C.{x|x≤1}D.{x|x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.證明:1×22-2×33+…+(2n-1)(2n)2-2n(2n+1)2=-n(n+1)(4n+3)(n∈N+

查看答案和解析>>

同步練習(xí)冊(cè)答案