A. | $\frac{1}{2}$ | B. | $\frac{3}{5}$ | C. | ln2 | D. | ln$\frac{5}{2}$ |
分析 令A(yù)=A1+A2+A3+…+An,根據(jù)定積分的定義得到:A1=-lnn+ln(n+1),同理求出A2,A3,…,An的值,相加求出即可.
解答 解:令A(yù)=A1+A2+A3+…+An,
由題意得:$\frac{1}{n+1}$<A1<$\frac{1}{n}$,$\frac{1}{n+2}$<A2<$\frac{1}{n+1}$,$\frac{1}{n+3}$<A3<$\frac{1}{n+2}$,…,$\frac{1}{2n}$<An<$\frac{1}{2n-1}$,
∴A1=${∫}_{\frac{1}{n+1}}^{\frac{1}{n}}$$\frac{1}{x}$dx=lnx${|}_{\frac{1}{n+1}}^{\frac{1}{n}}$=ln$\frac{1}{n}$-ln$\frac{1}{n+1}$=-lnn+ln(n+1),
同理:A2=-ln(n+1)+ln(n+2),A3=-ln(n+2)+ln(n+3),…,An=-ln(2n-1)+ln2n,
∴A=A1+A2+A3+…+An
=-lnn+ln(n+1)-ln(n+1)+ln(n+2)-ln(n+2)+ln(n+3)-…-ln(2n-1)+ln2n
=ln2n-lnn
=ln2,
故選:C
點評 本題考察了定積分的簡單應(yīng)用,根據(jù)定積分的定義得到A1,A2,A3,…,An的值是解題的關(guān)鍵,本題是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直角三角形 | B. | 等腰三角形 | ||
C. | 等邊三角形 | D. | 等腰或直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com