1.如圖,小明同學(xué)在山頂A處觀測到,一輛汽車在一條水平的公路上沿直線勻速行駛,小明在A處測得公路上B,C兩點(diǎn)的俯角分別為30°,45°,且∠BAC=135°.若山高AD=100m,汽車從B點(diǎn)到C點(diǎn)歷時(shí)14s,則這輛汽車的速度為22.6m/s(精確到0.1)參考數(shù)據(jù):$\sqrt{2}$≈1.414,$\sqrt{5}$≈2.236.

分析 求出AB=200m,AC=100m,由余弦定理可得BC,即可得出結(jié)論.

解答 解:由題意,AB=200m,AC=100$\sqrt{2}$m,
由余弦定理可得BC=$\sqrt{40000+20000-2×200×100\sqrt{2}×(-\frac{\sqrt{2}}{2})}$≈316.2m
這輛汽車的速度為316.2÷14≈22.6m/s
故答案為:22.6.

點(diǎn)評(píng) 本題考查了正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列命題中為真命題的是( 。
A.若x≠0,則x+$\frac{1}{x}$≥2
B.若直線x-ay=0與直線x-ay=0互相垂直,則a=1
C.命題:“若x2=1,則x=1或x=-1”的逆否命題為:“若x≠1,且x≠-1,則x2≠1”
D.一個(gè)命題的否命題為真,則它的逆否命題一定為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知球O的半徑為2,四點(diǎn)S、A、B、C均在球O的表面上,且SC=4,AB=$\sqrt{3}$,∠SCA=∠SCB=$\frac{π}{6}$,則點(diǎn)B到平面SAC的距離為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{3}{2}$C.$\frac{\sqrt{3}}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.要得到函數(shù)f(x)=cos2x的圖象,只需將函數(shù)g(x)=sin2x的圖象( 。
A.向左平移$\frac{1}{2}$個(gè)周期B.向右平移$\frac{1}{2}$個(gè)周期
C.向左平移$\frac{1}{4}$個(gè)周期D.向右平移$\frac{1}{4}$個(gè)周期

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知復(fù)數(shù)z=2+i,則$\frac{\overline{z}}{z}$=( 。
A.$\frac{3}{5}$-$\frac{4}{5}$iB.-$\frac{3}{5}$+$\frac{4}{5}$iC.$\frac{5}{3}$-$\frac{4}{3}$iD.-$\frac{5}{3}$+$\frac{4}{3}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有人持金出五關(guān),前關(guān)二稅一,次關(guān)三而稅一,次關(guān)四而稅一,次關(guān)五而稅一,次關(guān)六而稅一,并五關(guān)所稅,適重一斤.問本持金幾何”其意思為“今有人持金出五關(guān),第1關(guān)收稅金$\frac{1}{2}$,第2關(guān)收稅金$\frac{1}{3}$,第3關(guān)收稅金$\frac{1}{4}$,第4關(guān)收稅金$\frac{1}{5}$,第5關(guān)收稅金$\frac{1}{6}$,5關(guān)所收稅金之和,恰好1斤重,設(shè)這個(gè)人原本持金為x,按此規(guī)律通過第8關(guān),”則第8關(guān)需收稅金為$\frac{1}{72}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.“方程f′(x)=0有解”是“函數(shù)y=f(x)有極值”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=$\frac{1}{ln(4x-3)}$的定義域?yàn)閧x|x>$\frac{3}{4}$且x≠1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知角α為第三象限角,試確定角2α,$\frac{α}{2}$分別是第幾象限角.

查看答案和解析>>

同步練習(xí)冊答案