【題目】已知數(shù)列,其前項和為,滿足,,其中,.

⑴若,),求證:數(shù)列是等比數(shù)列;

⑵若數(shù)列是等比數(shù)列,求的值;

⑶若,且,求證:數(shù)列是等差數(shù)列.

【答案】(1)見解析(2)(3)見解析

【解析】試題分析:(1)(), 所以,故數(shù)列是等比數(shù)列;(2)利用特殊值法,得,;(3),所以,得,可證數(shù)列是等差數(shù)列.

試題解析:

(1)證明:若,則當(dāng)(),

所以

,

所以,

又由,,

,即,

所以,

故數(shù)列是等比數(shù)列.

(2)若是等比數(shù)列,設(shè)其公比為 ),

當(dāng)時,,即,得

          ,           

當(dāng)時,,即,得

          ,         

當(dāng)時,,即,得

         ,        

,得 ,

,得 ,

解得

代入①式,得

此時(),

所以,是公比為1的等比數(shù)列,

(3)證明:若,由,得

  又,解得

,, ,代入,

所以,,成等差數(shù)列,

,得,

兩式相減得:

所以

相減得:

所以

所以

,

因為,所以,

即數(shù)列是等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分16分)

已知數(shù)列{an}的前n項和為Sn,且a1=1,Sn=n2ann∈N*.

1)試求出S1,S2,S3,S4,并猜想Sn的表達(dá)式;

2)用數(shù)學(xué)納法證明你的猜想,并求出an的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(數(shù)學(xué)文卷·2017屆湖北省黃岡市高三上學(xué)期期末考試第16題) “中國剩余定理”又稱“孫子定理”.1852年英國來華傳教偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲.1874年,英國數(shù)學(xué)家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”. “中國剩余定理”講的是一個關(guān)于整除的問題,現(xiàn)有這樣一個整除問題:將2至2017這2016個數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列的項數(shù)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體ABCDEF中,ABCD是正方形,BF平面ABCDDE平面ABCD,BF=DE,點(diǎn)M為棱AE的中點(diǎn).

1)求證:平面BMD平面EFC;

2)若AB=1,BF=2,求三棱錐A-CEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)開展技術(shù)創(chuàng)新活動,提出了完成某項生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名技術(shù)人員,將他們隨機(jī)分成兩組,每組20人,第一組技術(shù)人員用第一種生產(chǎn)方式,第二組技術(shù)人員用第二種生產(chǎn)方式.根據(jù)他們完成生產(chǎn)任務(wù)的工作時間(單位:min)繪制了如下莖葉圖:

(1)求40名技術(shù)人員完成生產(chǎn)任務(wù)所需時間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時間超過和不超過的人數(shù)填入下面的列聯(lián)表:

超過

不超過

合計

第一種生產(chǎn)方式

第二種生產(chǎn)方式

合計

(2)根據(jù)(1)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?

附:

P(K2k0)

0.050

0.010

0.001

k0

3.841

6.635

1.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在某商業(yè)區(qū)周邊有 兩條公路,在點(diǎn)處交匯,該商業(yè)區(qū)為圓心角,半徑3的扇形,現(xiàn)規(guī)劃在該商業(yè)區(qū)外修建一條公路,與,分別交于,要求與扇形弧相切,切點(diǎn)不在,上.

(1)設(shè)試用表示新建公路的長度,求出滿足的關(guān)系式,并寫出的范圍;

(2)設(shè),試用表示新建公路的長度,并且確定的位置,使得新建公路的長度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=f(x)對定義域內(nèi)的每一個值x1,在其定義域內(nèi)都存在唯一的x2,使f(x1)f(x2)=1成立,則稱該函數(shù)為依賴函數(shù)

(1) 判斷函數(shù)g(x)=2x是否為依賴函數(shù),并說明理由;

(2) 若函數(shù)f(x)=(x–1)2在定義域[m,n](m>1)上為依賴函數(shù),求實數(shù)m、n乘積mn的取值范圍;

(3) 已知函數(shù)f(x)=(x–a)2 (a<)在定義域[,4]上為依賴函數(shù).若存在實數(shù)x[,4],使得對任意的tR,有不等式f(x)≥–t2+(s–t)x+4都成立,求實數(shù)s的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,求的值;

(3)當(dāng)時, 恒成立,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列語句是否為命題?如果是,判斷它的真假.

1)這道數(shù)學(xué)題有趣嗎?(20不可能不是自然數(shù);(3;(4;

591不是素數(shù);(6)上海的空氣質(zhì)量越來越好.

查看答案和解析>>

同步練習(xí)冊答案