20.若cos ($\frac{π}{3}$-α)=$\frac{3}{5}$,則cos($\frac{2π}{3}$+α)=-$\frac{3}{5}$.

分析 利用誘導(dǎo)公式化解可得答案.

解答 解:∵cos ($\frac{π}{3}$-α)=$\frac{3}{5}$,
則cos($\frac{2π}{3}$+α)=cos[π-($\frac{π}{3}-α$)]=-cos($\frac{π}{3}-α$)=-$\frac{3}{5}$.
故答案為:$-\frac{3}{5}$.

點評 本題主要考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則φ的值為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)已知tanα=3,計算$\frac{4sinα-2cosα}{5cosα+3sinα}$的值.
(2)已知$tanθ=-\frac{3}{4}$,求2+sinθcosθ-cos2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知(tanα-3)(sinα+cosα+3)=0,求值:
(1)$\frac{4sinα+2cosα}{5cosα+3sinα}$
(2)$2+\frac{2}{3}{sin^2}α+\frac{1}{4}{cos^2}α$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知α,β均為銳角,且$sinα=\frac{1}{2}sin({α+β})$,則α,β的大小關(guān)系是( 。
A.α<βB.α>βC.α=βD.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若p是真命題,q是假命題,則( 。
A.p且q是真命題B.p或q是假命題C.非p是真命題D.非q是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知$0<α<π,sinα•cosα=-\frac{1}{2}$,則$\frac{1}{1+sinα}+\frac{1}{1+cosα}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題正確的是( 。
A.若命題p:?x0∈R,x02-x0+1<0,則¬p:?x∉R,x2-x+1≥0
B.命題“若x=y,則cosx=cosy”的逆否命題為真命題
C.已知隨機變量X~N(2,σ2),若P(X<a)=0.32,則P(X>4-a)=0.68
D.已知相關(guān)變量(x,y)滿足線性回歸方程:$\stackrel{∧}{y}$=2-3x,若變量x增加一個單位,則y平均增加3個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的離心率為e,則斜率為k的直線與雙曲線C的左、右兩支都相交的充要條件是( 。
A.k2-e2>1B.k2-e2<1C.e2-k2>1D.e2-k2<1

查看答案和解析>>

同步練習(xí)冊答案