【題目】2017年,嘉積中學(xué)即將迎來100周年校慶.為了了解在校同學(xué)們對嘉積中學(xué)的看法,學(xué)校進(jìn)行了調(diào)查,從三個年級任選三個班,同學(xué)們對嘉積中學(xué)的看法情況如下:
對嘉積中學(xué)的看法 | 非常好,嘉積中學(xué)奠定了 | 很好,我的中學(xué)很快樂很充實 |
A班人數(shù)比例 |
|
|
B班人數(shù)比例 |
|
|
C班人數(shù)比例 |
|
|
(Ⅰ)從這三個班中各選一個同學(xué),求恰好有2人認(rèn)為嘉積中學(xué)“非常好”的概率(用比例作為相應(yīng)概率);
(Ⅱ)若在B班按所持態(tài)度分層抽樣,抽取9人,在這9人中任意選取3人,認(rèn)為嘉積中學(xué)“非常好”的人數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.
【答案】解:(Ⅰ)記這3位同學(xué)恰好有2人認(rèn)為嘉積中學(xué)“非常好”的事件為A,
則 ; …
(Ⅱ)在B班按照相應(yīng)比例選取9人,則
認(rèn)為嘉積中學(xué)“非常好”的應(yīng)該選取6人,
認(rèn)為嘉積中學(xué)“很好”的應(yīng)選取3人,
則ξ=0,1,2,3,
P(ξ=0)= = ,P(ξ=1)= = ,
P(ξ=2)= = ,P(ξ=3)= = ;
所以ξ的分布列為:
E | 0 | 1 | 2 | 3 |
PC |
|
|
|
|
則的期望值為: (人).
【解析】(Ⅰ)根據(jù)相互獨立事件的概率計算3位同學(xué)恰好有2人認(rèn)為“非常好”的概率;(Ⅱ)在B班按照相應(yīng)比例選取9人,認(rèn)為“非常好”的有6人,“很好”的有3人,
ξ的可能取值是0,1,2,3,計算對應(yīng)的概率,寫出分布列,計算數(shù)學(xué)期望.
【考點精析】本題主要考查了離散型隨機(jī)變量及其分布列的相關(guān)知識點,需要掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|x﹣1|+|x+1|,(x∈R)
(1)求證:f(x)≥2;
(2)若不等式f(x)≥ 對任意非零實數(shù)b恒成立,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直三棱柱ABC﹣A1B1C1的所有棱長都相等,D,E分別是AB,A1C1的中點,如圖所示.
(1)求證:DE∥平面BCC1B1;
(2)求DE與平面ABC所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1、F2為雙曲線的焦點,過F2垂直于實軸的直線交雙曲線于A、B兩點,BF1交y軸于點C,若AC⊥BF1 , 則雙曲線的離心率為( )
A.
B.
C.2
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點為,準(zhǔn)線為,是拋物線上的兩個動點,且滿足.設(shè)線段的中點在上的投影為,則的最大值是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1的底面為直角三角形,兩直角邊AB和AC的長分別為4和2,側(cè)棱AA1的長為5.
(1)求三棱柱ABC﹣A1B1C1的體積;
(2)設(shè)M是BC中點,求直線A1M與平面ABC所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于莖葉圖的說法,結(jié)論錯誤的一個是( )
A. 甲的極差是29 B. 甲的中位數(shù)是25
C. 乙的眾數(shù)是21 D. 甲的平均數(shù)比乙的大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對一切實數(shù)x,不等式x2+a|x|+1≥0恒成立,則實數(shù)a的取值范圍是( )
A.(﹣∞,﹣2)
B.[﹣2,+∞)
C.[﹣2,2]
D.[0,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com