.已知數(shù)列{an}的前n項和Sn與通項an滿足Sn=-an.
(1)求數(shù)列{an}的通項公式;
(2)設f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=++…+,求T2012;
(3)若cn=an·f(an),求{cn}的前n項和Un.
解:(1)當n=1時,a1=,
當n≥2時,an=Sn-Sn-1=-an-+an-1,
所以an=an-1,
即數(shù)列{an}是首項為,公比為的等比數(shù)列,
故an=n.
(2)由已知可得f(an)=log3n=-n.
則bn=-1-2-3-…-n=-,
故=-2(-),
又Tn=-2[(1-)+(-)+…+(-)]
=-2(1-),
所以T2012=-.
(3)由題意得cn=-n·n,
故Un=c1+c2+…+cn
=-[1×1+2×2+…+n×n],
則Un=-[1×2+2×3+…+n×n+1],
兩式相減可得
Un=-[1+2+…+n-n·n+1]
=-[1-n]+n·n+1
=-+·n+n·n+1,
則Un=-+·n+n·n+1.
科目:高中數(shù)學 來源: 題型:
已知拋物線C的頂點在坐標原點,焦點為F(0,-1),直線l與拋物線C相交于A,B兩點,若AB的中點為(2,-2),則直線l的方程為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知數(shù)列{an}的前n項和為Sn,且Sn=2n2+n,n∈N*,數(shù)列{bn}滿足an=4log2bn+3,n∈N*.
(1)求an,bn;
(2)求數(shù)列{an·bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設f(x)為定義在R上的奇函數(shù).當x≥0時,f(x)=2x+2x+b(b為常數(shù)),則f(-1)等于( )
(A)-3 (B)-1 (C)1 (D)3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
函數(shù)y=f(x-1)為奇函數(shù),y=f(x+1)為偶函數(shù)(定義域均為R).若0≤x<1時,f(x)=2x,則f(10)= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知函數(shù)f(x)=2mx2-2(4-m)x+1,g(x)=mx,若對于任一實數(shù)x,f(x)與g(x)至少有一個為正數(shù),則實數(shù)m的取值范圍是( )
(A)(0,2) (B)(0,8) (C)(2,8) (D)(-∞,0)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com