在△ABC中,sinA:sinB:sinC=k:k+1:2k(k>0),求k的取值范圍.
考點:余弦定理,正弦定理
專題:解三角形
分析:已知等式利用正弦定理化簡求出三邊之比,利用三角形三邊關(guān)系求出k的范圍即可.
解答: 解:∵在△ABC中,sinA:sinB:sinC=k:k+1:2k(k>0),
∴由正弦定理化簡得:a:b:c=k:k+1:2k(k>0),
由三角形三邊關(guān)系得:k+2k>k+1,且 2k-(k+1)<k,
解得:k>
1
2

則k的取值范圍為(
1
2
,+∞).
點評:此題考查了正弦、余弦定理,以及三角形三邊關(guān)系,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4px(p>0)與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)有相同的焦點F,點A是兩個曲線的一個交點,O為坐標(biāo)原點,且OA=FA,則雙曲線的離心率的平方為( 。
A、2
B、
13-
153
2
C、
13-
153
2
13+
153
2
D、
13+
153
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)下列條件,判斷三角形的形狀
(1)在△ABC中,
1-cosA
1-cosB
=
a
b

(2)在△ABC中,
a3+b3-c3
a+b-c
=c2
且sinAsinB=
3
4

(3)在ABC中,(a2-b2)sin(A+B)=(a2+b2)sin(A-B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:x2+y2+mx+8y-8=0和圓C2:x2+y2-4x+ny-2=0的公共弦AB所在直線方程為x+2y-1=0,兩圓C1,C2的圓心距為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求f(x)=(x2-3x+1)ex的導(dǎo)數(shù),并在函數(shù)曲線上求出點,使得曲線在這些點處的切線與x軸平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b是異面直線,且a⊥b,
e 1
、
e 2
分別為取直線a、b上的單位向量,且a=2
e1
+3
e 2
,b=k
e 1
-4
e 2
,a⊥b,則實數(shù)k的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角θ的終邊上有一點P(x,-1)(x≠0),且tanθ=-x,求sinθ,cosθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
,
b
滿足|
a
|=
3
,|
b
|=2,
a
b
=-3,則|
a
+2
b
|=(  )
A、1
B、
7
C、4+
3
D、2
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)份f(x)=2x的定義域是[0,3],設(shè)g(x)=f(2x)-f(x-2)
(1)求g(x)的解析式及定義域;
(2)求函數(shù)g(x)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案