已知平面向量
a
,
b
滿足|
a
|=
3
,|
b
|=2,
a
b
=-3,則|
a
+2
b
|=( 。
A、1
B、
7
C、4+
3
D、2
7
考點:平面向量數(shù)量積的運算
專題:計算題,平面向量及應用
分析:運用向量的數(shù)量積的性質(zhì),向量的平方即為模的平方,代入計算即可得到.
解答: 解:由于|
a
|=
3
,|
b
|=2,
a
b
=-3,
則|
a
+2
b
|=
a
2
+4
b
2
+4
a
b

=
3+4×4-4×3
=
7

故選B.
點評:本題考查向量的數(shù)量積的性質(zhì),考查向量的平方即為模的平方,考查運算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知0<α<
π
4
,則
lim
n→∞
sinnα-cosnα
sinnα+cosnα
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,sinA:sinB:sinC=k:k+1:2k(k>0),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

畫出一個能夠判斷任意三個正數(shù)能否構(gòu)成三角形的程序框圖,如果構(gòu)成三角形并輸出三角形的形狀(銳角、直角或鈍角三角形)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一數(shù)字游戲規(guī)則如下:第1次生成一個數(shù)a,以后每次生成的結(jié)果均是由上一次生成的每一個數(shù)x生成兩個數(shù),一個是-x,另一個是x+2.設前n次生成的所有數(shù)的和為Sn,若a=1,則S6=(  )
A、32B、64
C、127D、128

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=2,前n項和為Sn,an+1=
pan+n-1(n為奇數(shù))
-an-2n(n為偶數(shù))

(1)若數(shù)列{bn}滿足bn=a2n+a2n+1,試求數(shù)列{bn}前3項的和T3;
(2)若數(shù)列{cn}滿足cn=a2n,試判斷{cn}是否為等比數(shù)列,并說明理由;
(3)當p=
1
2
時,問是否存在n=N*,使得(S2n+1-10)c2n=1,若存在,求出所有的n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系中,曲線C1的參數(shù)方程為
x=2+cosθ
y=1+sinθ
為參數(shù)),若以坐標原點o為極點、x軸正半軸為極軸建立極坐標系'則曲線C2:psin(θ+
π
3
)=0上的點到曲線C1,上的點的最短距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=sin(2x+
π
2
)-4cos(π-x)sin(x-
π
6
).
(1)求f(0)的值;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=
1
3
,an+1=an+
a
2
n
n2
(n∈N*).證明:對一切n∈N*,有
(Ⅰ)
an+1-an
an+1an
1
n2
;
(Ⅱ)0<an<1.

查看答案和解析>>

同步練習冊答案