1.已知函數(shù)f(x)滿足條件:?x∈R,f(x)+f(-x)=0且f(x+t)-f(x)<0(其中t為正數(shù)),則函數(shù)f(x)的解析式可以是( 。
A.y=xsinx+3B.y=x3C.y=-sinxD.y=-3x

分析 根據(jù)條件可判斷出f(x)在R上為奇函數(shù),且單調(diào)遞減,這樣看哪個(gè)選項(xiàng)函數(shù)滿足這個(gè)條件即可.

解答 解:f(x)+f(-x)=0;
∴f(-x)=-f(x);
∴f(x)為奇函數(shù);
f(x+t)-f(x)<0;
∴f(x+t)<f(x),t>0;
∴f(x)在R上為減函數(shù);
∴f(x)在R上是奇函數(shù)且是減函數(shù);
A.y=xsinx+3為非奇非偶函數(shù),∴該選項(xiàng)錯(cuò)誤;
B.y=x3在R上為增函數(shù),∴該選項(xiàng)錯(cuò)誤;
C.y=-sinx在R上沒有單調(diào)性,∴該選項(xiàng)錯(cuò)誤;
D.一次函數(shù)y=-3x為奇函數(shù),且在R上為減函數(shù),∴該選項(xiàng)正確.
故選D.

點(diǎn)評(píng) 考查奇函數(shù)、減函數(shù)的定義,非奇非偶函數(shù)的定義,清楚y=x3和正弦函數(shù)的單調(diào)性,一次函數(shù)的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>b>0)$的左,右焦點(diǎn)分別為F1,F(xiàn)2,雙曲線上一點(diǎn)P滿足PF2⊥x軸,若|F1F2|=12,|PF2|=5,則該雙曲線的離心率為(  )
A.$\frac{13}{12}$B.$\frac{12}{5}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.動(dòng)點(diǎn)M(x,y)到點(diǎn)(2,0)的距離比到y(tǒng)軸的距離大2,則動(dòng)點(diǎn)M的軌跡方程為y2=8x(x≥0)或y=0(x<0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知A(1,2),B(2,11),若直線y=(m-$\frac{6}{m}$)x+1(m≠0)與線段AB相交,則實(shí)數(shù)m的取值范圍是(  )
A.[-2,0)∪[3,+∞)B.(-∞,-1]∪(0,6]C.[-2,-1]∪[3,6]D.[-2,0)∪(0,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.等差數(shù)列{an}中,a2=8,前6項(xiàng)和和S6=66,設(shè)${b_n}=\frac{2}{{(n+1){a_n}}}$,Tn=b1+b2+…+bn,則Tn=( 。
A.$1-\frac{1}{n+1}$B.$1-\frac{1}{n+2}$C.$\frac{1}{2}-\frac{1}{n+1}$D.$\frac{1}{2}-\frac{1}{n+2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)$f(x)=\left\{\begin{array}{l}-sinx,x>0\\ sinx,x≤0\end{array}\right.$,則下列結(jié)論正確的是(  )
A.f(x)是奇函數(shù)
B.f(x)是偶函數(shù)
C.f(x)是周期函數(shù)
D.f(x)在$[-\frac{π}{2}+2kπ,\frac{π}{2}+2kπ](k∈z)$上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知四棱錐,它的底面是邊長為2的正方形,其俯視圖如圖所示,側(cè)視圖為直角三角形,則該四棱錐的側(cè)面中直角三角形的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{8-{a}^{2}}$=1(a>0)的焦點(diǎn)在x軸上.
(Ⅰ)若橢圓E的離心率e=$\frac{\sqrt{2}}{5}$a,求橢圓E的方程;
(Ⅱ)設(shè)F1、F2分別是橢圓E的左、右焦點(diǎn),P為直線x+y=2$\sqrt{2}$與橢圓E的一個(gè)公共點(diǎn),直線F2P交y軸于點(diǎn)Q,連結(jié)F1P,問當(dāng)a變化時(shí),$\overrightarrow{{F}_{1}P}$與$\overrightarrow{{F}_{1}Q}$的夾角是否為定值,若是定值,求出該定值,若不是定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知雙曲線C2與橢圓C1:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1具有相同的焦點(diǎn),則兩條曲線相交四個(gè)交點(diǎn)形成四邊形面積最大時(shí)雙曲線C2的離心率為$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案