12.動(dòng)點(diǎn)M(x,y)到點(diǎn)(2,0)的距離比到y(tǒng)軸的距離大2,則動(dòng)點(diǎn)M的軌跡方程為y2=8x(x≥0)或y=0(x<0).

分析 由已知列出方程,化簡(jiǎn)即可求出動(dòng)點(diǎn)M的軌跡C的方程.

解答 解:∵動(dòng)點(diǎn)M(x,y)到點(diǎn)(2,0)的距離比到y(tǒng)軸的距離大2,
∴$\sqrt{(x-2)^{2}+{y}^{2}}$=|x|+2,
整理,得y2=4x+|4x|,
∴當(dāng)x≥0時(shí),動(dòng)點(diǎn)M的軌跡C的方程為y2=8x.
當(dāng)x<0時(shí),動(dòng)點(diǎn)M的軌跡C的方程為y=0.
故答案為:y2=8x(x≥0)或y=0(x<0)

點(diǎn)評(píng) 本題考查點(diǎn)的軌跡方程,是中檔題,解題時(shí)要認(rèn)真審題,注意函數(shù)與方程思想的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.對(duì)任意實(shí)數(shù)a、b定義運(yùn)算?:a?b=$\left\{\begin{array}{l}{b,a-b≥1}\\{a,a-b<1}\end{array}\right.$,設(shè)f(x)=(x2-1)?(4+x),若函數(shù)y=f(x)+k有三個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.(-1,3]B.[-3,1]C.[-1,2)D.[-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知角α的終邊與單位圓交于點(diǎn)(-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$),則sin2α的值為(  )
A.$\frac{\sqrt{5}}{5}$B.-$\frac{\sqrt{5}}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,則輸出S的值為( 。
A.16B.32C.64D.1024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.圖形的對(duì)稱,正弦曲線的流暢都能體現(xiàn)“數(shù)學(xué)美”.“黃金分割”也是數(shù)學(xué)美得 一種體現(xiàn),如圖,橢圓的中心在原點(diǎn),F(xiàn)為左焦點(diǎn),當(dāng)$\overrightarrow{FB}⊥\overrightarrow{AB}$時(shí),其離心率為$\frac{{\sqrt{5}-1}}{2}$,此類橢圓被稱為“黃金橢圓”,類比“黃金橢圓”,可推算出“黃金雙曲線”的離心率e等于$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)拋物線x2=4y的焦點(diǎn)為F,過點(diǎn)F作斜率為k(k>0)的直線l與拋物線相交于A、B兩點(diǎn),且點(diǎn)P恰為AB的中點(diǎn),過點(diǎn)P作x軸的垂線與拋物線交于點(diǎn)M,若|MF|=4,則直線l的方程為(  )
A.$y=2\sqrt{2}x+1$B.$y=\sqrt{3}x+1$C.$y=\sqrt{2}x+1$D.$y=2\sqrt{3}x+2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直三棱柱ABC-A1B1C1的底面為正三角形,E,F(xiàn)分別是A1C1,B1C1上的點(diǎn),且滿足A1E=EC1,B1F=3FC1
(1)求證:平面AEF⊥平面BB1C1C;
(2)設(shè)直三棱柱ABC-A1B1C1的棱長(zhǎng)均相等,求二面角C1-AE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)滿足條件:?x∈R,f(x)+f(-x)=0且f(x+t)-f(x)<0(其中t為正數(shù)),則函數(shù)f(x)的解析式可以是( 。
A.y=xsinx+3B.y=x3C.y=-sinxD.y=-3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知A、B為橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右頂點(diǎn),點(diǎn)P在E上,在△APB中,tanA=$\frac{1}{3}$,tanB=$\frac{3}{4}$,則E的離心率為( 。
A.$\sqrt{3}$-1B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案