分析 (1)將函數(shù)化簡(jiǎn)為正弦型函數(shù),利用T=$\frac{2π}{ω}$求出ω的值,即求出函數(shù)f(x)表達(dá)式,將x=$\frac{π}{12}$代入即可;
(2)由(1)可知f(x)表達(dá)式,求出y=f(x+$\frac{π}{12}$)的表達(dá)式,利用三角函數(shù)單調(diào)性求解值域,即其取值范圍.
解答 解:(1)由題意得:
f(x)=sinωx(sinωx+$\sqrt{3}$cosωx)=sin2ωx+$\sqrt{3}$sinωxcosωx=$\frac{1}{2}$(1-cos2ωx)+$\frac{\sqrt{3}}{2}$sin2ωx=sin(2ωx-$\frac{π}{6}$)+$\frac{1}{2}$,
又因?yàn)棣兀?且函數(shù)y=f(x)的最小正周期為π,
所以T=$\frac{2π}{2ω}$=π,所以ω=1,
所以f(x)=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,
所以f($\frac{π}{12}$)=sin(2$•\frac{π}{12}$-$\frac{π}{6}$)+$\frac{1}{2}$=$\frac{1}{2}$;
(2)由(1)可知,
f(x+$\frac{π}{12}$)=sin[2(x+$\frac{π}{12}$)-$\frac{π}{6}$]+$\frac{1}{2}$=sin2x+$\frac{1}{2}$,
又因?yàn)閤∈[-$\frac{π}{6}$,$\frac{π}{3}$],
所以2x∈[$-\frac{π}{3}$,$\frac{2π}{3}$],
所以sin2x∈[$-\frac{\sqrt{3}}{2}$,1],
所以sin2x+$\frac{1}{2}$∈[$\frac{1-\sqrt{3}}{2}$,$\frac{3}{2}$],
所以函數(shù)y=f(x+$\frac{π}{12}$)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上的取值范圍為[$\frac{1-\sqrt{3}}{2}$,$\frac{3}{2}$].
點(diǎn)評(píng) (1)本題主要考察了二倍角公式和輔助角公式,以及正弦型函數(shù),難度中等;(2)本題利用整體代入法求函數(shù)值域,關(guān)鍵在于對(duì)三角函數(shù)單調(diào)性的掌握,利用其單調(diào)性求出其值域即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,1] | C. | [0,1) | D. | [0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com