5.若點(diǎn)(-4,-2)在直線2x-y+m=0的下方,則m的取值范圍是m>6.

分析 根據(jù)點(diǎn)與不等式的關(guān)系進(jìn)行轉(zhuǎn)化求解即可.

解答 解:∵點(diǎn)(-4,-2)在直線2x-y+m=0的下方,
∴點(diǎn)(-4,-2)滿足不等式2x-y+m>0,
即-8+2+m>0,得m>6,
故答案為:m>6.

點(diǎn)評 本題主要考查二元一次不等式表示平面區(qū)域,根據(jù)點(diǎn)與平面區(qū)域的關(guān)系轉(zhuǎn)化為不等式關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.袋子中有大小、質(zhì)地相同的紅球、黑球各一個,現(xiàn)有放回地隨機(jī)摸取3次,每次摸取一個球,若摸出紅球,得10分,摸出黑球,得5分,則3次摸球所得總分至少是25分的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=sin(ωx+φ)(0<φ<π,ω>0)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為$\frac{π}{2}$.
(1)求f($\frac{π}{8}$)的值;
(2)函數(shù)h(x)=af$(\frac{x}{2})-{sin^2}$x,x∈[$\frac{π}{6},\frac{2π}{3}$],有最小值為-1,求a的值和函數(shù)h(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)xy>0,則$({x^2}+\frac{4}{y^2})({y^2}+\frac{1}{x^2})$的最小值為( 。
A.-9B.9C.10D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}滿足${a_n}•{a_{n+1}}=\frac{n}{n+2},(n∈{N^*})$,${a_1}=\frac{1}{2}$.
(1)求a2,a3,a4值;
(2)歸納猜想數(shù)列{an}的通項公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知x>1,則函數(shù)$y=\frac{{{x^2}+x+1}}{x-1}$的最小值為$3+2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}中,an=-3n+4,等比數(shù)列{bn}的公比q滿足q=an-an-1(n≥2)且b1=a1,則滿足$\frac{1}{{|{b_1}|}}+\frac{1}{{|{b_2}|}}+…+\frac{1}{{|{b_n}|}}<\frac{121}{81}$成立的n的最大值為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,某污水處理廠要在一個矩形ABCD的池底水平鋪設(shè)污水凈化管道(直角△EFG,E是直角頂點(diǎn))來處理污水,管道越長,污水凈化效果越好,設(shè)計要求管道的接口E是AB的中點(diǎn),F(xiàn)、G分別落在AD、BC上,且AB=20m,$AD=10\sqrt{3}m$,設(shè)∠GEB=θ.
(1)試將污水管道的長度l表示成θ的函數(shù),并寫出定義域;
(2)當(dāng)θ為何值時,污水凈化效果最好,并求此時管道的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若直線y=2x上存在點(diǎn)(x,y)滿足約束條件$\left\{\begin{array}{l}{x+y+6>0}\\{2x-y+8≥0}\\{x≤m}\end{array}\right.$,則實數(shù)m的取值范圍是( 。
A.(-2,+∞)B.[-2,+∞)C.(-∞,-2)D.(-∞,-2]

查看答案和解析>>

同步練習(xí)冊答案