17.已知數(shù)列{an}中,an=-3n+4,等比數(shù)列{bn}的公比q滿足q=an-an-1(n≥2)且b1=a1,則滿足$\frac{1}{{|{b_1}|}}+\frac{1}{{|{b_2}|}}+…+\frac{1}{{|{b_n}|}}<\frac{121}{81}$成立的n的最大值為( 。
A.3B.4C.5D.6

分析 求出等比數(shù)列的公比和首項,再由等比數(shù)列的求和公式和不等式解法,可得n<5,即可得到所求最大值.

解答 解:數(shù)列{an}中,an=-3n+4,
等比數(shù)列{bn}的公比q滿足q=an-an-1(n≥2)=-3,
且b1=a1=1,
bn=b1qn-1=(-3)n-1,
滿足$\frac{1}{{|{b_1}|}}+\frac{1}{{|{b_2}|}}+…+\frac{1}{{|{b_n}|}}<\frac{121}{81}$成立,
即為1+$\frac{1}{3}$+$\frac{1}{9}$+…+$\frac{1}{{3}^{n-1}}$=$\frac{1-\frac{1}{{3}^{n}}}{1-\frac{1}{3}}$<$\frac{121}{81}$,
解得n<5,
則則滿足$\frac{1}{{|{b_1}|}}+\frac{1}{{|{b_2}|}}+…+\frac{1}{{|{b_n}|}}<\frac{121}{81}$成立的n的最大值為4.
故選:B.

點評 本題考查等比數(shù)列的通項公式和求和公式,考查不等式的解法,化簡整理的運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.為了調(diào)查某班級的作業(yè)完成情況,將該班級的52名學生隨機編號,用系統(tǒng)抽樣的方法抽取一個容量為4的樣本,已知5號,18號,44號同學在樣本中,那么樣本中還有一位同學的編號應該是( 。
A.23B.27C.31D.33

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.為調(diào)查了解某省屬師范大學師范類畢業(yè)生參加工作后,從事的工作與教育是否有關的情況,該校隨機調(diào)查了該校80位性別不同的2016年師范類畢業(yè)大學生,得到具體數(shù)據(jù)如表:
與教育有關與教育無關合計
301040
35540
合計651580
(1)能否在犯錯誤的概率不超過5%的前提下,認為“師范類畢業(yè)生從事與教育有關的工作與性別有關”?
(2)求這80位師范類畢業(yè)生從事與教育有關工作的頻率;
(3)以(2)中的頻率作為概率.該校近幾年畢業(yè)的2000名師范類大學生中隨機選取4名,記這4名畢業(yè)生從事與教育有關的人數(shù)為X,求X的數(shù)學期望E(X).
參考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
P(K2≥k00.500.400.250.150.100.050.0250.010
k00.4550.7081.3232.0722.7063.8415.0236.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若點(-4,-2)在直線2x-y+m=0的下方,則m的取值范圍是m>6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在等比數(shù)列{an}中,公比q>1,a2=2,前三項和S3=7.
(1)求數(shù)列{an}的通項公式;
(2)記bn=log2an,cn=$\frac{1}{_{n+1}•_{n+2}}$,設數(shù)列{cn}的前n項和為Tn,求證:Tn<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y+4≥0}\\{x-y+3≥0}\\{x≤0}\\{y≥0}\end{array}\right.$,則目標函數(shù)z=-3y-2x的最大值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.5051-1被7除后的余數(shù)為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知在數(shù)列{an}中,${a_1}=\frac{3}{2},{a_{n+1}}=a_n^2-2{a_n}+2$.,n∈N*
(1)求證:1<an+1<an<2;
(2)求證:$\frac{6}{{{2^{n-1}}+3}}≤{a_n}≤\frac{{{2^{n-1}}+2}}{{{2^{n-1}}+1}}$;
(3)求證:n<sn<n+2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設不等式|x-2|<a的解集為A,且$\frac{3}{2}$∈A,$\frac{1}{2}$∉A,則a的取值范圍是( 。
A.$\frac{1}{2}$<a<$\frac{3}{2}$B.$\frac{1}{2}$≤a<$\frac{3}{2}$C.$\frac{1}{2}$<a≤$\frac{3}{2}$D.$\frac{1}{2}$≤a≤$\frac{3}{2}$

查看答案和解析>>

同步練習冊答案