A. | 3 | B. | 4 | C. | 5 | D. | 6 |
分析 求出等比數(shù)列的公比和首項,再由等比數(shù)列的求和公式和不等式解法,可得n<5,即可得到所求最大值.
解答 解:數(shù)列{an}中,an=-3n+4,
等比數(shù)列{bn}的公比q滿足q=an-an-1(n≥2)=-3,
且b1=a1=1,
bn=b1qn-1=(-3)n-1,
滿足$\frac{1}{{|{b_1}|}}+\frac{1}{{|{b_2}|}}+…+\frac{1}{{|{b_n}|}}<\frac{121}{81}$成立,
即為1+$\frac{1}{3}$+$\frac{1}{9}$+…+$\frac{1}{{3}^{n-1}}$=$\frac{1-\frac{1}{{3}^{n}}}{1-\frac{1}{3}}$<$\frac{121}{81}$,
解得n<5,
則則滿足$\frac{1}{{|{b_1}|}}+\frac{1}{{|{b_2}|}}+…+\frac{1}{{|{b_n}|}}<\frac{121}{81}$成立的n的最大值為4.
故選:B.
點評 本題考查等比數(shù)列的通項公式和求和公式,考查不等式的解法,化簡整理的運算能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 23 | B. | 27 | C. | 31 | D. | 33 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
與教育有關 | 與教育無關 | 合計 | |
男 | 30 | 10 | 40 |
女 | 35 | 5 | 40 |
合計 | 65 | 15 | 80 |
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.023 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$<a<$\frac{3}{2}$ | B. | $\frac{1}{2}$≤a<$\frac{3}{2}$ | C. | $\frac{1}{2}$<a≤$\frac{3}{2}$ | D. | $\frac{1}{2}$≤a≤$\frac{3}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com