14.用“五點法“作出y=3sin($\frac{1}{2}$x-$\frac{π}{4}$)在一個周期上的簡圖.

分析 用五點法求出對應(yīng)的點的坐標(biāo),即可在坐標(biāo)系中作出函數(shù)一個周期的圖象.

解答 解:列表:

x$\frac{π}{2}$$\frac{3π}{2}$$\frac{5π}{2}$$\frac{7π}{2}$$\frac{9π}{2}$
$\frac{1}{2}$x-$\frac{π}{4}$0$\frac{π}{2}$π$\frac{3π}{2}$
3sin($\frac{1}{2}$x-$\frac{π}{4}$)030-30
描點、連線,如圖所示:

點評 本題主要考查了三角函數(shù)的圖象和性質(zhì),考查了五點作圖法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列各組表示同一函數(shù)的是(  )
A.y=x(x∈R)與y=x(x∈N)B.$y=\sqrt{x^2}$與$y={({\sqrt{x}})^2}$C.y=1+$\frac{1}{x}$與u=1+$\frac{1}{v}$D.y=x與$y=\frac{x^2}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知p:$\left\{{\begin{array}{l}{x+2≥0}\\{x-10≤0}\end{array}}\right.$,q:1-m≤x≤1+m,若非p是非q的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的圖象經(jīng)過點(0,$\frac{1}{2}$),對任意的x都有f(x1)≤f(x)≤f(x2),且|x2-x1|的最小值為$\frac{π}{2}$.
(1)求f($\frac{π}{12}$)的值;
(2)求函數(shù)f(x)在[-$\frac{π}{2}$,$\frac{3π}{2}$]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題中真命題的個數(shù)是( 。
①函數(shù)f(x)=$\frac{1}{x}$在定義域內(nèi)單調(diào)遞減;
②命題“?x0∈R.x02-x0+1<0”的否定是“?x∈R,x2-x+1≥0”;
③已知m為實數(shù),直線l1:mx+y+3=0,直線l2(3m-2)x+my+4=0,則m=1是兩直線互相平行的必要不充分條件;
④關(guān)于x的一元二次方程x2-2ax+4=0的一個根大于1.-個根小于1,則實數(shù)a的取值范圍是a∈($\frac{5}{2}$,+∞)
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知p:$\left\{\begin{array}{l}{lg|x|≤1}\\{{2}^{x+2}≥1}\end{array}\right.$,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要不充分條件,求實數(shù)m的取值范圍( 。
A.(-∞,9]B.[9,+∞)C.(-∞,3]D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖所示,在△ABC中,點D是邊BC的中點,A,D,E三點共線,求證:存在一個實數(shù)λ,使得$\overrightarrow{AE}$=λ($\overrightarrow{AB}$+$\overrightarrow{AC}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=x2-2x-1,x∈[-1,0],則函數(shù)f(x)的值域為[-1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知cosx+cosy=$\frac{\sqrt{2}}{2}$,求sinx+siny的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案