18.已知點(diǎn)P(1,1)在關(guān)于x,y的不等式組$\left\{\begin{array}{l}{mx+ny≤2}\\{ny-mx≤2}\\{ny≥1}\end{array}\right.$表示的平面區(qū)域內(nèi),則( 。
A.1≤m2+n2≤4 且 0≤m+n≤2B.1≤m2+n2≤4且  1≤n-m≤2
C.2≤m2+n2≤4 且  1≤m+n≤2D.2≤m2+n2≤4且 0≤n-m≤2

分析 求出約束條件,畫出可行域,然后利用目標(biāo)函數(shù)的幾何意義求解即可.

解答 解:點(diǎn)(1,1)在不等式組$\left\{\begin{array}{l}{mx+ny≤2}\\{ny-mx≤2}\\{ny≥1}\end{array}\right.$表示的平面區(qū)域內(nèi),
可得$\left\{\begin{array}{l}{m+n≤2}\\{n-m≤2}\\{n≥1}\end{array}\right.$,
不等式組表示的可行域如圖:

m2+n2的幾何意義是可行域內(nèi)的點(diǎn)到原點(diǎn)距離的平方,
顯然(0,1)到原點(diǎn)的距離最小,最小值為1,
(0,2)到原點(diǎn)的距離最大,最大值為4,
則1≤m2+n2≤4,0≤m+n≤2,
故選:A

點(diǎn)評(píng) 本題考查線性規(guī)劃的應(yīng)用,數(shù)形結(jié)合的應(yīng)用,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.下列四個(gè)命題:
①兩直線平行的充要條件是它們的斜率相等;
②圓(x+2)2+(y+1)2=4與直線x-2y=0相交,所得弦長(zhǎng)為4;
③平面內(nèi)到兩定點(diǎn)的距離之和等于常數(shù)的點(diǎn)的軌跡是橢圓;
④拋物線上任一點(diǎn)M到其焦點(diǎn)的距離都等于點(diǎn)M到其準(zhǔn)線的距離.
其中,正確命題的序號(hào)為②④.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知x>0,y>0,且$\frac{1}{x}$+$\frac{2}{y}$=1,若x+2y>a2+8a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.?dāng)?shù)列{an}中,若an+1=$\frac{n+2}{n}$an,a1=2,則數(shù)列{$\frac{1}{{a}_{n}}$}的前2016項(xiàng)和為$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=xlnx.
(Ⅰ)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求證:f(x)≥x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.sin(-10°)cos160°-sin80°sin(200°)=( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.三角形的面積為S=$\frac{1}{2}$(a+b+c)r,a,b,c為三邊的邊長(zhǎng),r為三角形內(nèi)切圓半徑,利用類比推理可得出四面體的體積為( 。
A.V=$\frac{1}{3}$abc (a,b,c為底邊邊長(zhǎng))
B.V=$\frac{1}{3}$Sh(S為地面面積,h為四面體的高)
C.V=$\frac{1}{3}$(ab+bc+ac)h(a,b,c為底邊邊長(zhǎng),h為四面體的高)
D.V=$\frac{1}{3}$(S1+S2+S3+S4)r(其中S1,S2,S3,S4分別為四面體四個(gè)面的面積,r為四面體內(nèi)切球的半徑)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=x2-2x,g(x)=ax+2(a>0),且對(duì)任意的x1∈[-1,2],都存在x2∈[-1,2],使f(x2)=g(x1),則實(shí)數(shù)a的取值范圍是( 。
A.[3,+∞)B.(0,3]C.[$\frac{1}{2}$,3]D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.曲線y=x3+1在點(diǎn)P(1,2)處的切線方程為( 。
A.3x-y+1=0B.3x-y-1=0C.3x+y-1=0D.3x+y-5=0

查看答案和解析>>

同步練習(xí)冊(cè)答案