如圖,直四棱柱ABCD-A1B1C1D1底面ABCD直角梯形,AB∥CD,∠BAD=90°,P是棱CD上一點,AB=2,AD=
2
,AA1=3,CP=3,PD=1.
(1)求直四棱柱ABCD-A1B1C1D1的側面積和體積;
(2)求證:PB⊥平面BCC1B1
考點:直線與平面垂直的判定,棱柱、棱錐、棱臺的體積
專題:空間位置關系與距離
分析:(1)先通過梯形面積公式求得底面的面積,最后利用體積公式求得四棱錐的體積;過B作BM⊥CD交CD于M,分別求得BM,MC和BC,最后求得四個側面的面積相加即可求得棱錐的側面積.
(2)先分別求得PC1,BC1和PB利用勾股定理證明出PB⊥BC1,然后根據(jù)線面垂直的性質證明出B1B⊥PB.最后根據(jù)線面垂直的判定定理證明出PB⊥平面BCC1B1
解答: 解:(1)底面直角梯形的面積S=
1
2
(AB+CD)•AD=3
2
,V=S•AA1=9
2
,
過B作BM⊥CD交CD于M,在Rt△BMC中,BM=
2
,MC=2,則BC=
6
,
側面積S=(
2
+2+
6
+4)×3=18+3
2
+3
6

(2)∵PC1=
32+32
=3
2
,BC1=
6-32
=
15
,PB=
2+1
=
3

∴P
C
2
1
=PB2+B
C
2
1
,
∴PB⊥BC1
∵B1B⊥平面ABCD,
∴B1B⊥PB.
又B1B∩BC=B,
∴PB⊥平面BCC1B1
點評:本題主要考查了線面垂直的判定定理的應用以及幾何體的體積的運算.考查了學生空間觀察能力和運算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,|φ|<
π
2
)的圖象相鄰兩個對稱中心間距離為π,且f(x)有一條對稱軸是x=
π
4
,則函數(shù)y=f(
π
4
-x)是( 。
A、偶函數(shù)且在x=0處取最小值
B、偶函數(shù)且在x=0處取最大值
C、奇函數(shù)且在x=0處取最大值
D、奇函數(shù)且在x=0處取最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c為三角形的三邊,且a+b+c=3,求證:
1
a+b-c
+
1
b+c-a
+
1
c+a-b
≥3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A(x1,f(x1)),B(x2,f(x2))是函數(shù)f(x)=
1
2
+log2
x
1-x
的圖象上的任意兩點.
(1)當x1+x2=1時,求f(x1)+f(x2)的值;
(2)設Sn=f(
1
n+1
)+f(
2
n+1
)+…+f(
n-1
n+1
)+f(
n
n+1
),其中n∈N*,求Sn;
(3)對于(2)中Sn,已知an=(
1
Sn+1
2,其中n∈N*,設Tn為數(shù)列{an}的前n項的和,求證:
4
9
≤Tn
5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an},a1=25,a6=15,數(shù)列{bn}的前n項和為Sn=2bn-2.(n∈N*
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{
an
bn
}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式ax2-3x+2<0的解集為A={x|1<x<b}
(1)求a,b的值;
(2)求函數(shù)f(x)=(2a+b)x-
9
(a-b)x
在區(qū)間[3,5]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn是數(shù)列{an}的前n項和,且a1=1,nan+1=2Sn(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a2,2b3=b4
(1)求a2的值;
(2)求數(shù)列{an},{bn}的通項公式;
(3)求數(shù)列{an•bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=(2+i)m2-2(1-i).當實數(shù)m取什么值時,復數(shù)z是:
(1)虛數(shù);
(2)純虛數(shù);
(3)復平面內(nèi)第二、四象限角平分線上的點對應的復數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}滿足a1=2,an+1=4an-3n+1,n∈N*,則數(shù)列{an}的前n項和為
 

查看答案和解析>>

同步練習冊答案