16.某種產(chǎn)品的廣告費支出x與銷售額y之間有如表對應(yīng)數(shù)據(jù)(單位:百萬元).根據(jù)如表求出y關(guān)于x的線性回歸方程為 $\widehat{y}$=6.5x+17.5,則表中t的值為( 。
x24568
y304060t70
A.56.5B.60.5C.50D.62

分析 計算$\overline{x}$,代入回歸方程得出$\overline{y}$,即可得出t.

解答 解:$\overline{x}$=$\frac{2+4+5+6+8}{5}=5$,
∴$\overline{y}$=6.5×5+17.5=50,
∴$\frac{30+40+60+t+70}{5}=50$,解得t=50.
故選C.

點評 本題考查了線性回歸方程經(jīng)過樣本中心的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.半徑為2的球O中有一內(nèi)接正四棱柱(底面是正方形,側(cè)棱垂直底面),當(dāng)該正四棱柱的側(cè)面積最大時,球的表面積與該正四棱柱的側(cè)面積之差是( 。
A.16($π-\sqrt{3}$)B.16($π-\sqrt{2}$)C.8(2$π-3\sqrt{2}$)D.8(2$π-\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)點A,B分別是x,y軸上的兩個動點,AB=1,若$\overrightarrow{BA}=\overrightarrow{AC}$.
(1)求點C的軌跡Γ;
(2)已知直線l:x+4y-2=0,過點D(2,2)作直線m交軌跡Γ于不同的兩點E,F(xiàn),交直線l于點K.問$\frac{|DK|}{|DE|}$+$\frac{|DK|}{|DF|}$的值是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,一只轉(zhuǎn)盤,均勻標(biāo)有8個數(shù),現(xiàn)轉(zhuǎn)動轉(zhuǎn)盤,則轉(zhuǎn)盤停止轉(zhuǎn)動時,指針向奇數(shù)的概率是( 。
A.$\frac{1}{2}$B.$\frac{2}{5}$C.$\frac{3}{8}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.曲線y=3lnx+x+2在點P處的切線方程為4x-y-1=0,則點P的坐標(biāo)是(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.曲線y=2x3-3x+1在點(1,0)處的切線方程為3x-y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.△ABC中,角A、B、C的對邊長分別為a、b、c,D是BC的中點,若a=4,AD=c-b,則△ABC的面積的最大值為$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的宣傳費xi和年銷售量yi(i=1,2,3,..8)數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{n}$(xi-$\overline{x}$)2$\sum_{i=1}^{n}$(wi-$\overline{w}$)2$\sum_{i=1}^{n}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{n}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.656.36.8289.81.61469108.8
表中:wi=$\sqrt{{x}_{i}}$,$\overrightarrow{w}$=$\frac{1}{8}$$\sum_{i=1}^{n}$wi
(Ⅰ)根據(jù)散點圖判斷,y=a+bx與y=c+d$\sqrt{x}$,哪一個適宜作為年銷售量y關(guān)于年宣傳費x的回歸方程類型(給出判斷即可,不必說明理由);
(Ⅱ)根據(jù)(I)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為z=0.2y-x,根據(jù)(II)的結(jié)果回答下列問題:
(i)當(dāng)年宣傳費x=49時,年銷售量及年利潤的預(yù)報值時多少?
(ii)當(dāng)年宣傳費x為何值時,年利潤的預(yù)報值最大?
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2)…(un,vn),其回歸線$\widehat{v}$=$\widehat{α}$+$\widehat{β}$$\overline{u}$的斜率和截距的最小二乘估計分別為:$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖所示的幾何體為一簡單組合體,在底面ABCD中,∠DAB=60°,AD⊥DC,AB⊥BC,QD⊥平面ABCD,PA∥QD,PA=1,AD=AB=QD=2.
(Ⅰ)求證:平面PAB⊥平面QBC;
(Ⅱ)求該組合體的體積.

查看答案和解析>>

同步練習(xí)冊答案