分析 (1)根據(jù)面面平行的性質(zhì)推出線面平行;
(2)由題意可證DH⊥PA,DH⊥AB,可證DH⊥平面PAB,從而證明DH⊥PB,由(1)EF∥AB,EG∥PB,從而證明DH⊥EG,DH⊥EF,即可證明DH⊥平面EFG.
解答 證明:(1)∵E、G分別是PC、BC的中點(diǎn),
∴EG是△PBC的中位線,
∴EG∥PB,
又∵PB?平面PAB,EG?平面PAB,
∴EG∥平面PAB,
∵E、F分別是PC、PD的中點(diǎn),
∴EF∥CD,
又∵底面ABCD為正方形,
∴CD∥AB,
∴EF∥AB,
又∵AB?平面PAB,EF?平面PAB,
∴EF∥平面PAB,
又EF∩EG=E,
∴平面EFG∥平面PAB,
∵PA?平面PAB,
∴PA∥平面EFG.
(2)∵PD⊥AD,PD=AD,H為的中點(diǎn),
∴DH⊥PA,
∵BA⊥平面PDA,DH?平面PDA,
∴DH⊥AB,
∴DH⊥平面PAB,
∴DH⊥PB,
由(1)EF∥AB,EG∥PB,
∴DH⊥EG,DH⊥EF,
∴DH⊥平面EFG.
點(diǎn)評(píng) 本題主要考查了面面平行的判定定理的應(yīng)用,線線平行、線面平行、面面平行的相互轉(zhuǎn)化,線面垂直的判定定理的應(yīng)用,此類試題也是立體幾何的重點(diǎn)考查的試題類型,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (-$\frac{1}{2}$,1] | C. | (-∞,0)∪[$\frac{1}{2}$,1] | D. | (-$\frac{1}{2}$,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com