A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{3}$ |
分析 首先求出${∫}_{0}^{1}$f(x)dx,利用${∫}_{0}^{1}$f(x)dx=f(x0)得到關于x0等式解之.
解答 解:因為f(x)=ax2+c(a≠0),則${∫}_{0}^{1}$f(x)dx=($\frac{1}{3}$ax3+cx)|${\;}_{0}^{1}$=$\frac{1}{3}$a+c=f(x0)=ax02+c,即$\frac{1}{3}$a=a${{x}_{0}}^{2}$,a≠0,又0≤x0≤1,
所以${x}_{0}=\frac{\sqrt{3}}{3}$;
故選:D.
點評 本題考查了函數(shù)的定積分的運算;關鍵是找出被積函數(shù)的原函數(shù).
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{9π}{2}$ | B. | $\frac{13π}{4}$ | C. | $\frac{7π}{3}$ | D. | $\frac{14π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a≤32 | B. | a≥32 | C. | a≥16 | D. | a≤16 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 向左平移$\frac{π}{6}$個單位 | B. | 向右平移$\frac{π}{6}$個單位 | ||
C. | 向左平移$\frac{π}{3}$個單位 | D. | 向右平移$\frac{π}{3}$個單位 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{8}{5}$ | B. | $\frac{12}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{18}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B>C | B. | B=C | C. | B<C | D. | 關系不確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com