10.已知實數(shù)x,y滿足x2+y2+2x-2$\sqrt{3}$y=0,則x2+y2的最大值為16.

分析 求出圓的標(biāo)準(zhǔn)方程,利用x2+y2的幾何意義進(jìn)行求解即可.

解答 解:圓的標(biāo)準(zhǔn)方程為(x+1)2+(y-$\sqrt{3}$))2=4,
則圓心坐標(biāo)為C(-1,$\sqrt{3}$),半徑R=2,
x2+y2的幾何意義為圓上點(diǎn)到原點(diǎn)的距離的平方,
則|OC|=$\sqrt{1+3}=\sqrt{4}$=2,
則圓上點(diǎn)到原點(diǎn)的距離的最大值為|OC|+R=2+2=4,
則x2+y2的最大值為42=16,
故答案為:16.

點(diǎn)評 本題主要考查距離的最值求解,根據(jù)圓的標(biāo)準(zhǔn)方程,求出圓心和半徑是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知等差數(shù)列{an}的公差d≠0,且a1,a3,a9構(gòu)成等比數(shù)列{bn}的前3項,則$\frac{{{a_1}+{a_3}+{a_6}}}{{{a_2}+{a_4}+{a_{10}}}}$=$\frac{5}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)奇函數(shù)f(x)=$\left\{\begin{array}{l}{acosx-\sqrt{3}sinx+c,x≥0}\\{cosx+bsinx-c,x<0}\end{array}\right.$,則a+b的值為-1-$\sqrt{3}$.不等式f(x)>f(-x)在x∈[-π,π]上的解集為($\frac{2π}{3}$,π]∪(-$\frac{2π}{3}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.i是虛數(shù)單位,若$\frac{1+7i}{2-i}$=a+bi(a,b∈R),則a+b的值是(  )
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=(sinx+cosx)2的最大值與最小正周期分別是( 。
A.2,2πB.2,πC.3,2πD.3,π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在Rt△ABC中,∠A=30°,在斜邊AB上取點(diǎn)M,則使|AM|>|AC|的概率為$\frac{2-\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知直線l經(jīng)過點(diǎn)(0,4),斜率為-3,求l的方程(寫成一次函數(shù)的形式).(提示待定系數(shù)法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知二次函數(shù)f(x)=ax2-4x-5a,
(1)當(dāng)a=-3時,求不等式f(x)<0的解集;
(2)若函數(shù)f(x)圖象的對稱軸在區(qū)間(-$\sqrt{6}$,-2)內(nèi),求f($\frac{2}{a}$)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了抓住將到來的“五一”小長假旅游商機(jī),某商店決定購進(jìn)A、B兩種紀(jì)念品,若購進(jìn)A種紀(jì)念品8件,B種紀(jì)念品3件,需要95元,若購進(jìn)A中紀(jì)念品5件,B種紀(jì)念品6件,需要80元.
(1)求購進(jìn)A、B兩種紀(jì)念品每件各需多少元?
(2)若該商店決定購進(jìn)這兩種紀(jì)念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀(jì)念品的資金不少于750元,但不超過764元,請分別寫出該商店有幾種進(jìn)貨方案?
(3)已知商家出售一件A種紀(jì)念品可獲利a元,出售一件B種紀(jì)念品可獲利(5-a)元,并且商家出售的紀(jì)念品均不低于成本.問:在(2)的條件下,商家采用哪種方案可獲利最多?

查看答案和解析>>

同步練習(xí)冊答案