9.已知直線l過點(diǎn)M(1,1),且與x軸,y軸的正半軸分別相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).求:
(1)當(dāng)|OA|十|OB|取得最小值時(shí),直線l的方程;
(2)當(dāng)|MA|2+|MB|2取得最小值時(shí),直線l的方程.

分析 (1)設(shè)出點(diǎn)A的坐標(biāo),寫出直線AB的方程,利用基本不等式求出a+b=|OA|+|OB|的最小值,寫出對(duì)應(yīng)的直線方程;
(2)設(shè)出直線方程為y-1=k(x-1)(k<0),求出|MA|2+|MB|2的最小值,寫出對(duì)應(yīng)的直線方程.

解答 解:(1)設(shè)點(diǎn)A(a,0),B(0,b),且a>0,b>0,
直線l的方程為:$\frac{x}{a}$+$\frac{y}$=1,
且直線l過點(diǎn)M(1,1),∴$\frac{1}{a}$+$\frac{1}$=1①;
∴a+b=(a+b)•($\frac{1}{a}$+$\frac{1}$)=2+$\frac{a}$+$\frac{a}$≥2+2$\sqrt{\frac{a}•\frac{a}}$=4,
當(dāng)且僅當(dāng)$\frac{a}$=$\frac{a}$,即a=b時(shí)取“=”,
將a=b代入①式得a=2,b=2;
∴直線l的方程為x+y-2=0,
即|OA|+|OB|取最小值4時(shí),l的方程為x+y-2=0;
(2)設(shè)直線方程為y-1=k(x-1)(k<0),
則A(-$\frac{1}{k}$+1,0),B(0,1-k),
∴|MA|2+|MB|2=[(-$\frac{1}{k}$)2+1]+[1+(-k)2]=2+k2+$\frac{1}{{k}^{2}}$≥2+2•k2•$\frac{1}{{k}^{2}}$=4,
當(dāng)且僅當(dāng)k=-1時(shí)取“=”;
∴當(dāng)|MA|2+|MB|2取得最小值4時(shí),直線l的方程為y-1=-(x-1),即x+y-2=0.

點(diǎn)評(píng) 本題考查了兩點(diǎn)間的距離公式及基本不等式和直線方法的應(yīng)用問題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知△ABC的三個(gè)頂點(diǎn)A(-5,0),B(3,-3),C(0,2).
(1)求AC邊所在直線的方程;
(2)求邊AC的垂直平分線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.曲線C是平面內(nèi)與兩個(gè)定點(diǎn)F1(-1,0)和F2(1,0)的距離的積等于常數(shù)a(a>1)的點(diǎn)的軌跡,給出下列四個(gè)結(jié)論:
①曲線C關(guān)于坐標(biāo)軸對(duì)稱;
②曲線C上的點(diǎn)都在橢圓$\frac{x^2}{a}+\frac{y^2}{a-1}=1$外;
③曲線C上點(diǎn)的橫坐標(biāo)的最大值為$\sqrt{a+1}$;
④若點(diǎn)P在曲線C上(不在x軸上),則△PF1F2的面積不大于$\frac{1}{2}a$.
其中,所有正確結(jié)論的序號(hào)是①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)I是全集,集合M,N,P都是其子集,則圖中的陰影部分表示的集合為(  )
A.M∩(P∩∁IN)B.M∩(N∩∁IP)C.M∩(∁IN∩∁IM)D.(M∩N)∪(M∩P)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知A、B分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點(diǎn)、上頂點(diǎn),過左焦點(diǎn)F1作PF1⊥x軸,與橢圓在x軸上方的交點(diǎn)為P,且OP∥AB.
(1)求橢圓的離心率;
(2)設(shè)Q是橢圓上任意一點(diǎn),F(xiàn)2是右焦點(diǎn),求∠F1QF2的取值范圍;
(3)在(2)的條件下,當(dāng)QF2⊥AB時(shí),延長(zhǎng)QF2交橢圓另一點(diǎn)M,若△F1MQ面積為20$\sqrt{3}$,求此時(shí)橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.若將函數(shù)y=f(x)的圖象向左平移2個(gè)單位.再以y軸為對(duì)稱軸對(duì)折.得到y(tǒng)=lg(x-1)的圖象,求f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=log2(1+x)-log2(1-x).
(1)判斷f(x)的奇偶性,并予以證明;
(2)解不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知點(diǎn)A,B,C,D為同一球面上的四點(diǎn),且AB=AC=AD=2,AB⊥AC,AC⊥AD,AD⊥AB,則這個(gè)球的表面積是( 。
A.16πB.20πC.12πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)f(x)=|2x-1|,若關(guān)于x的函數(shù)g(x)=(1-t)f2(x)-f(x)+t有三個(gè)零點(diǎn),則實(shí)數(shù)t的取值范圍為( 。
A.(0,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)∪(1,+∞)C.($\frac{1}{2},1$)D.[0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案