一只螞蟻在三邊長分別為3,4,5的三角形內(nèi)爬行,則此螞蟻距離三角形三個頂點的距離均超過1的概率為(  )
A、1-
π
6
B、1-
π
12
C、
π
6
D、
π
12
考點:幾何概型
專題:概率與統(tǒng)計
分析:求出三角形的面積;再求出據(jù)三角形的三頂點距離小于等于1的區(qū)域為三個扇形,三個扇形的和是半圓,求出半圓的面積;利用對理事件的概率公式及幾何概型概率公式求出恰在離三個頂點距離都大于1的地方的概率.
解答: 解:三角形ABC的面積為
1
2
×3×4=6
,
離三個頂點距離都不大于1的地方的面積為S=
1
2
×π•12=
π
2
,
所以其恰在離三個頂點距離都大于1的地方的概率為
P=1-
π
2
6
=1-
π
12
,
故選:B
點評:本題考查幾何概型概率公式、對立事件概率公式、三角形的面積公式、扇形的面積公式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設p:“a>3”q:“f(x)=x3-ax2+1在(0,2)上有唯一零點”,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知公差不為零的等差數(shù)列{an}的前n項和為Sn,若a6=S3,則
S5
a5
的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)三個函數(shù)f(x)=2x,g(x)=2x,h(x)=log2x給出以下五句話:
(1)f(x),g(x),h(x)在其定義域上都是增函數(shù);
(2)f(x)的增長速度始終不變;
(3)f(x)的增長速度越來越快;
(4)g(x)的增長速度越來越快;
(5)h(x)的增長速度越來越慢.
其中正確的個數(shù)為(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,P為不等式
y≤1
x+y-2≥0
x-y-1≤0
所表示的平面區(qū)域上一動點,則直線OP斜率的最大值為(  )
A、2
B、1
C、
1
2
D、
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)為R上的可導函數(shù),且?x∈R,均有f(x)>f′(x),則以下判斷正確的是( 。
A、f(2013)>e2013f(0)
B、f(2013)<e2013f(0)
C、f(2013)=e2013f(0)
D、f(2013)與e2013f(0)大小無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(x-
π
6
)sin(x+
π
3
),x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC中,若A=
π
4
,銳角C滿足f(
C
2
+
π
6
)=
1
2
,求
BC
AB
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B、C為△ABC的三個內(nèi)角,其對邊分別為a、b、c,若
m
=(cosB,sinB)
,
n
=(cosC,-sinC)
,且
m
n
=
1
2

(Ⅰ)求A;
(Ⅱ)若a=2
3
, b+c=4
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給定曲線Γ:(5-m)x2+(m-2)y2=8,(m∈R).
(1)若曲線Γ是焦點為F1(-2,0),F(xiàn)2(2,0)的雙曲線,求實數(shù)m的值;
(2)當m=4時,記M是橢圓Γ上的動點,過橢圓長軸的端點A作AQ∥QM(O為坐標原點),交橢圓于Q,交y軸于P,求
AQ•AP
OM2
的值.

查看答案和解析>>

同步練習冊答案