9.若全集U=R,A={0,1,2,3},B={2,3,4,5},則Venn圖中陰影部分表示的集合為( 。
A.{0,1}B.{2,3}C.{4,5}D.{0,1,4,5}

分析 根據(jù)Venn圖和集合之間的關(guān)系進(jìn)行判斷.

解答 解:由Venn圖可知,陰影部分的元素為屬于B但不屬于A的元素構(gòu)成,所以用集合表示為B∩(∁UA).
∵全集U=R,A={0,1,2,3},B={2,3,4,5},
∴B∩(∁UA)={4,5},
故選:C.

點(diǎn)評(píng) 本題主要考查Venn圖表達(dá) 集合的關(guān)系和運(yùn)算,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.甲、乙、丙、丁四位同學(xué)準(zhǔn)備游覽A,B,C三個(gè)景點(diǎn).每人只能去一個(gè)地方,B景點(diǎn)一定要有人去,則不同的游覽方案有65種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某幾何體直觀圖與三視圖如圖所示,AB是⊙O的直徑,PA垂直⊙O的直徑,PA垂直⊙O所在的平面,C為圓周上一點(diǎn).
(1)求證:BC⊥平面PAC;
(2)若三棱錐B-PAC的體積為$\frac{\sqrt{3}}{3}$,求銳二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.平行四邊形ABCD中,AB=$\sqrt{13}$,BC=$\sqrt{5}$,BD=4,AC,BD交于O,將△ABD沿BD折起至△A′BD,使得A′C⊥CB.
(1)求證:A′C⊥平面A′AD;
(2)求二面角A′-BD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)復(fù)數(shù)z滿足$\frac{1+z}{1-z}$=i,則z的虛部為( 。
A.-iB.iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤1}\\{x+y≥0}\\{x-y-2≥0}\\{\;}\end{array}\right.$,則z=x-2y的最小值是( 。
A.3B.1C.-3D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=ex-ax-1,若x軸為曲線y=f(x)的切線,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在三棱臺(tái)DEF-ABC中,已知底面ABC是以AB為斜邊的直角三角形,F(xiàn)C⊥底面ABC,AB=2DE,G,H分別為AC,BC的中點(diǎn).
(1)求證:平面ABED∥平面GHF;
(2)若BC=CF=$\frac{1}{2}$AB,求二面角A-DE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若復(fù)數(shù)z滿足z(1-i)=i2017(i是虛數(shù)單位),則復(fù)數(shù)z等于(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.-$\frac{1}{2}$-$\frac{1}{2}$iC.-$\frac{1}{2}$+$\frac{1}{2}$iD.$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

同步練習(xí)冊(cè)答案