6.計算下列各式的值:
(1)8${\;}^{\frac{2}{3}$+(0.01)${\;}^{-\frac{1}{2}}}$+($\frac{1}{27}$)${\;}^{-\frac{1}{3}}$;
(2)21g5+$\frac{2}{3}$lg8+lg5•lg20+(lg2)2

分析 (1)根據(jù)指數(shù)冪的運算性質(zhì)化簡即可;
(2)根據(jù)對數(shù)的運算性質(zhì)化簡即可.

解答 解:(1)8${\;}^{\frac{2}{3}$+(0.01)${\;}^{-\frac{1}{2}}}$+($\frac{1}{27}$)${\;}^{-\frac{1}{3}}$=4+10+3=17
(2)21g5+$\frac{2}{3}$lg8+lg5•lg20+(lg2)2=21g5+2lg2+lg5(1+lg2)+(lg2)2=2+lg5+lg2(lg5+lg2)=2+lg5+lg2=3

點評 本題考查了指數(shù)冪和對數(shù)的運算性質(zhì),屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知全集U=R,A={x|x2-5x+6≥0},則∁UA=( 。
A.{x|x>2}B.{x|x>3或x<2}C.{x|2≤x≤3}D.{x|2<x<3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在等比數(shù)列{an}中,各項均為正值,且a6a10+a3a5=41,a4a8=5,則a4+a8=$\sqrt{51}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)f(x)=x2-4x+5在區(qū)間[0,m]上的最大值為5,最小值為1,則實數(shù)m的取值范圍是(  )
A.[2,+∞) B.(2,4] C.[0,4]D.[2,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設(shè)集合S={x|x=$\frac{1}{k}$,k∈N*}.
(1)請寫出S的一個4元素,使得子集中的4個元素恰好構(gòu)成等差數(shù)列;
(2)若無窮遞減等比數(shù)列{an}中的每一項都在S中,且公比為q,求證:q∈(0,$\frac{1}{2}$);
(3)設(shè)正整數(shù)n>1,若S的n元子集A滿足:對任意的x,y∈A,且x≠y,有|x-y|≥$\frac{1}{64}$,求證:n≤15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設(shè)平面內(nèi)有n條直線(n≥3),其中有且僅有兩條直線互相平行,任意三條直線不過同一點,若用f(n)表示這n條直線交點的個數(shù),則f(8)的值為( 。
A.30B.32C.27D.29

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖棱長為1的正方體ABCD-A1B1C1D1中,P為線段A1B上的動點,則下列結(jié)論錯誤的是( 。
A.平面D1A1P⊥平面A1APB.二面角B-A1D1-A的大小為45°
C.三棱錐B1-D1PC的體積不變D.AP+PD1的最小值為$\sqrt{2+\sqrt{3}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=alnx-bx,在x=1處取得極值為2.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)在區(qū)間(m,2m+1)上為增函數(shù),求實數(shù)m的取值范圍;
(3)設(shè)g(x)=xf(x),若P(x0,y0)為g(x)圖象上任意一點,直線l與g(x)的圖象相切于點P,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若復數(shù)z滿足|z|=2,則|1+$\sqrt{3}$i+z|的取值范圍是( 。
A.[1,3]B.[1,4]C.[0,3]D.[0,4]

查看答案和解析>>

同步練習冊答案