8.已知:AB為圓O的直徑,AB=AC,AC,BC分別交圓O于E,D,連接BE,DF⊥AC于F
(1)證明DF是圓O的切線(xiàn);
(2)如果BC=6,AB=5,求BE的長(zhǎng)度.

分析 (1)連接OD,AD,根據(jù)直徑所對(duì)的圓周角是直角以及AB=AC,得到DB=DC,OD是△ABC的中位線(xiàn),所以O(shè)D∥AC,再由DF⊥AC得到DF⊥OD,可以證明DF是⊙O的切線(xiàn).
(2)由等面積求BE的長(zhǎng)度.

解答 (1)證明:連接OD,AD,
∵AB是⊙O的直徑,
∴AD⊥BC,
∵AB=AC,
∴DB=DC,
∵OA=OB,
∴OD是△ABC的中位線(xiàn),
即:OD∥AC,
∵DF⊥AC,
∴DF⊥OD.
∴DF是⊙O的切線(xiàn).
(2)解:由(1)可知BD=3,
∵AB=5,∴AD=4,
∵AB為圓O的直徑,∴BE⊥AC,
∴由等面積可得$\frac{1}{2}$•5•BE=$\frac{1}{2}$•6•4,∴BE=$\frac{24}{5}$.

點(diǎn)評(píng) 本題考查的是切線(xiàn)的判定,考查三角形面積的計(jì)算,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知直線(xiàn)m,n,b和平面α,若m,n?α,則“b⊥m,b⊥n”是“b⊥α”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,AB是⊙O的一條切線(xiàn),切點(diǎn)為B,ADE,CFD,CGE都是⊙O的割線(xiàn),已知AC=AB.求證:
(1)AD•AE=AC2;
(2)若FG⊥EC,則$\frac{CF}{CG}$-$\frac{CG}{CF}$=$\frac{DE}{AC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知奇函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且當(dāng)x∈(0,+∞)時(shí),xf′(x)-f(x)=x,若f(e)=e,則f(x)>0的解集為(  )
A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(e,+∞)C.(-e,0)∪(e,+∞)D.(-∞,-e)∪(0,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.若函數(shù)y=x3+bx2+cx在區(qū)間(-∞,0)及[2,+∞)是增函數(shù),在(0,2)是減函數(shù),求此函數(shù)在[-1,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知f′(x)是函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),滿(mǎn)足f′(x)=f(x),且f(0)=2,設(shè)函數(shù)g(x)=f(x)-lnf3(x)的一個(gè)零點(diǎn)為x0,則以下正確的是(  )
A.x0∈(0,1)B.x0∈(1,2)C.x0∈(2,3)D.x0∈(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,PM是圓O的切線(xiàn),M為切點(diǎn),PAB是圓的割線(xiàn),AD∥PM,點(diǎn)D在圓上,AD與MB交于點(diǎn)C.若AB=6,BC=4,AC=3,則MD等于(  )
A.2B.$\frac{8}{3}$C.$\frac{9}{4}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.定義一種運(yùn)算“*”,它對(duì)于正整數(shù)滿(mǎn)足下列運(yùn)算性質(zhì):
①2*2016=1,②(2n+2)*2016=2[(2n)*2016],則2016*2016=21007

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.空間直角坐標(biāo)系中的點(diǎn)($\sqrt{2}$,$\sqrt{2}$,1)關(guān)于z軸對(duì)稱(chēng)的點(diǎn)的柱坐標(biāo)為( 。
A.(2,$\frac{π}{4}$,1)B.(2$\sqrt{2}$,$\frac{π}{4}$,1)C.(2,$\frac{5π}{4}$,1)D.(2$\sqrt{2}$,$\frac{5π}{4}$,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案