20.如圖,PM是圓O的切線,M為切點(diǎn),PAB是圓的割線,AD∥PM,點(diǎn)D在圓上,AD與MB交于點(diǎn)C.若AB=6,BC=4,AC=3,則MD等于(  )
A.2B.$\frac{8}{3}$C.$\frac{9}{4}$D.$\frac{4}{9}$

分析 證明△BMA∽△AMC,得出MC=$\frac{4}{3}$,再利用相交弦定理,求出CD,利用△MCD∽△ACB,求出MD.

解答 解:由題意,連接AM,則
∵PM是圓O的切線,M為切點(diǎn),
∴∠PMA=∠PBM,
∵AD∥PM,
∴∠PMA=∠MAC,
∴∠MAC=∠ABM,
∵∠AMB=∠CMA,
∴△BMA∽△AMC,
∴$\frac{BM}{AM}=\frac{MA}{MC}$=$\frac{BA}{AC}$,
∵AB=6,AC=3,
∴BM=2AM,AM=2MC,
∴BM=4MC,
∴4+MC=4MC,
∴MC=$\frac{4}{3}$.
由相交弦定理可得3CD=$\frac{4}{3}×4$,
∴CD=$\frac{16}{9}$.
∵△MCD∽△ACB,
∴$\frac{MD}{AB}$=$\frac{CD}{CB}$,
∴MD=$\frac{8}{3}$
故選:B.

點(diǎn)評 本題考查三角形相似的判定與性質(zhì),考查相交弦定理的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=|x+$\frac{8}{m}}$|+|x-2m|(m>0).
(1)求函數(shù)f(x)的最小值;
(2)求使得不等式f(1)>10成立的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=alnx+$\frac{1}{2}$x2-ax(a為常數(shù))有兩個(gè)極值點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)設(shè)f(x)的兩個(gè)極值點(diǎn)分別為x1,x2,若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知:AB為圓O的直徑,AB=AC,AC,BC分別交圓O于E,D,連接BE,DF⊥AC于F
(1)證明DF是圓O的切線;
(2)如果BC=6,AB=5,求BE的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x2-alnx-x(a≠0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)有兩個(gè)極值點(diǎn)x1,x2(0<x1<x2),記過點(diǎn)A(x1,f(x1)),B(x2,f(x2))的直線的斜率為k,問是否存在a,使k=-2a-$\frac{1}{2}$,若存在,求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,AB是圓O的直徑,AC是弦,∠BAC的平分線AD交圓O于點(diǎn)D,DE⊥AC,交AC的延長線于點(diǎn)E,OE交AD于點(diǎn)F.
(Ⅰ)求證:DE是圓O的切線;
(Ⅱ)若$\frac{AC}{AB}$=$\frac{2}{5}$,求$\frac{AF}{DF}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在三棱錐A-BCD中,三條棱AB、BC、CD兩兩垂直,且AD與平面BCD成45°角,與平面ABC成30°角.
(1)由該棱錐相鄰的兩個(gè)面組成的二面角中,指出所有的直二面角;
(2)求AC與平面ABD所成角的大;
(3)求二面角B-AD-C大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,△ABC的外接圓為⊙O,延長CB至Q,再延長QA至P,使得QC2-QA2=BA•QC.
(1)求證:QA為⊙O的切線;
(2)若AC恰好為∠BAP的平分線,AB=6,AC=12,求QA的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的首項(xiàng)a1>0,前n項(xiàng)和為Sn.?dāng)?shù)列$\left\{{\left.{\frac{S_n}{n}}\right\}}$是公差為$\frac{a_1}{2}$的等差數(shù)列.
(1)求$\frac{a_6}{a_2}$的值;
(2)數(shù)列{bn}滿足:bn+1+(-1)pnbn=2an,其中n,p∈N*.
(ⅰ)若p=a1=1,求數(shù)列{bn}的前4k項(xiàng)的和,k∈N*;
(ⅱ)當(dāng)p=2時(shí),對所有的正整數(shù)n,都有bn+1>bn,證明:${2^{a_1}}$-${2^{2{a_1}-1}}$<b1<${2^{{a_1}-1}}$.

查看答案和解析>>

同步練習(xí)冊答案