5.設集合A={x|x2-4<0},B={1,2,3},則A∩B=( 。
A.{1,2,3}B.{1,2}C.{1}D.{2}

分析 化簡集合A,求出A∩B即可.

解答 解:∵集合A={x|x2-4<0}={x|-2<x<2},B={1,2,3},
∴A∩B={1}.
故選:C.

點評 本題考查了集合的化簡與運算問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=3,E為B1C1的中點,F(xiàn)在CC1上,且C1F=1,G在AA1上,且AG=2.
(1)證明:DG∥平面A1EF;
(2)設平面A1EF與DD1交于點H,求線段DH的長,并求出截面A1EFH的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.把函數(shù)y=sin(6x+$\frac{π}{6}$)圖象上各點的橫坐標擴大到原來的3倍(縱坐標不變),再將圖象向右平移$\frac{π}{3}$個單位,那么所得函數(shù)圖象的一條對稱軸方程為( 。
A.x=-$\frac{π}{2}$B.x=-$\frac{π}{4}$C.x=$\frac{π}{8}$D.x=$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.函數(shù)f(x)=$\sqrt{1-{x}^{2}}$的定義域是[-1,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在四面體ABCD中,已知AD⊥BC,BC=2,AD=6,且$\frac{AB}{BD}$=$\frac{AC}{CD}$=2,則四面體ABCD的體積的最大值為$2\sqrt{15}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知4asin2$\frac{B}{2}$=b+2a-2c.
(Ⅰ)求角A的大小;
(Ⅱ)若a=$\sqrt{6}$,△ABC的面積為$\sqrt{3}$,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=2x(x+2),若數(shù)列{an}滿足a1=$\frac{1}{2}$,且an+1=$\frac{1}{1-{a}_{n}}$,則f(a2016)=(  )
A.6B.-6C.-2D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.用數(shù)字0,1,2,3,4,5可以組成沒有重復數(shù)字,并且比20000大的五位奇數(shù)共有(  )
A.288個B.144個C.240個D.126個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的右焦點,雙曲線兩漸近線分別為l1,l2,過點F作直線11的垂線,分別交l1l2于A,B兩點,若A,B兩點均在x軸的上方且|0A|=3,|OB|=5,則雙曲線的離心率為$\sqrt{5}$或$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

同步練習冊答案