15.在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=3,E為B1C1的中點(diǎn),F(xiàn)在CC1上,且C1F=1,G在AA1上,且AG=2.
(1)證明:DG∥平面A1EF;
(2)設(shè)平面A1EF與DD1交于點(diǎn)H,求線段DH的長(zhǎng),并求出截面A1EFH的面積.

分析 (1)構(gòu)造四邊形GMCD是平行四邊形,利用線線平行,證明線面平行,從而證明DG∥平面A1EF;
(2)根據(jù)線面平行的性質(zhì)定理,結(jié)合題意,得出截面A1EFH是等腰梯形,結(jié)合圖中數(shù)據(jù)求出截面面積.

解答 解:(1)證明:如圖所示,
設(shè)M為BB1上一點(diǎn),且BM=2,連接MG、MC,易得GM∥DC,且GM=DC,
∴四邊形GMCD是平行四邊形,
∴DG∥CM;
在矩形B1C1CB中,C1E=C1F=1,BC=BM=2,
∴∠MCF=∠EFC=45°,∴FE∥CM,∴DG∥FE;
又DG?平面A1EF,F(xiàn)E?平面A1EF,
∴DG∥平面A1EF;
(2)∵DG∥平面A1EF,DG?平面AA1D1D,
平面AA1D1D∩平面A1EF=A1H,
∴DG∥A1H,∴DH=A1G=1;
由上易得截面A1EFH是等腰梯形;
其中EF=$\sqrt{2}$,A1H=2$\sqrt{2}$,A1E=$\sqrt{5}$;
由此可得等腰梯形A1EFH的高為$\frac{3\sqrt{2}}{2}$;
∴截面A1EFH的面積為$\frac{9}{2}$.

點(diǎn)評(píng) 本題考查了空間中的線線與線面平行的應(yīng)用問(wèn)題,也考查了空間想象能力與邏輯思維能力的應(yīng)用問(wèn)題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.袋中裝分別標(biāo)有數(shù)字1,2,3,4,5的5個(gè)形狀相同的小球.
(1)從袋中每次任取一個(gè)球,每次取出后不放回,連續(xù)取兩次,求兩個(gè)小球所標(biāo)數(shù)字之和為3的倍數(shù);
(2)從袋中有放回的取出2個(gè)小球,記第一次取出的小球所標(biāo)數(shù)字為x,第二次為y,求滿足|x-y|>2或x+y>7的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,求使$\overrightarrow{a}$+k$\overrightarrow$與k$\overrightarrow{a}$+$\overrightarrow$的夾角為銳角的實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知圓C:(x+c)2+y2=4a2,點(diǎn)A(c,0),其中c>a>0,M是圓C上的動(dòng)點(diǎn),MA的中垂線交MC所在直線于P,則點(diǎn)P的軌跡是( 。
A.橢圓B.雙曲線C.拋物線D.直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.與正方體各棱都相切的球稱為棱切球,則它的體積與正方體體積之比為$\frac{\sqrt{2}}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知雙曲線中心在原點(diǎn),頂點(diǎn)在y軸上,兩頂點(diǎn)間的距離是16,且離心率為$\frac{5}{4}$,試求雙曲線方程及焦點(diǎn)到漸近線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.梯形ABCD中,AB∥CD,AB=6,AD=DC=2,若$\overrightarrow{AD}$⊥$\overrightarrow{BC}$,則$\overrightarrow{AC}$•$\overrightarrow{BD}$=-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=sin(x+$\frac{π}{6}$)-$\sqrt{3}$sin($\frac{π}{3}$-x)(x∈R)的最大值為( 。
A.1+$\sqrt{3}$B.2C.1D.-1+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)集合A={x|x2-4<0},B={1,2,3},則A∩B=(  )
A.{1,2,3}B.{1,2}C.{1}D.{2}

查看答案和解析>>

同步練習(xí)冊(cè)答案