14.若關(guān)于x的方程($\frac{1}{2}$)x=$\frac{1}{1-lga}$有正根,則實(shí)數(shù)a的取值范圍是( 。
A.(0,1]B.(0,1)C.(1,10)D.[1,+∞)

分析 先求出方程有解的范圍,利用補(bǔ)集思想,先求出($\frac{1}{2}$)x=$\frac{1}{1-lga}$沒有正根的等價條件即可得到結(jié)論.

解答 解:若($\frac{1}{2}$)x=$\frac{1}{1-lga}$有解,則$\frac{1}{1-lga}$>0,則1-lga>0,lga<1,即0<a<10,
若($\frac{1}{2}$)x=$\frac{1}{1-lga}$沒有正根,
則x≤0時,方程有解,
∵($\frac{1}{2}$)x≥1,
∴$\frac{1}{1-lga}$≥1,則0<1-lga≤1,
即0≤lga<1,即1≤a<10,
則若關(guān)于x的方程($\frac{1}{2}$)x=$\frac{1}{1-lga}$有正根,
則0<a<1,
故選:B

點(diǎn)評 本題主要考查函數(shù)與方程的應(yīng)用,根據(jù)指數(shù)函數(shù)的性質(zhì),利用正難則反的原則進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a,b>0)虛軸上的端點(diǎn)B(0,b),右焦點(diǎn)F,若以B為圓心的圓與C的一條漸近線相切于點(diǎn)P,且$\overrightarrow{BP}$∥$\overrightarrow{PF}$,則該雙曲線的離心率為$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)數(shù)列{an}的前n項和為Sn,a1=2,若Sn+1=$\frac{n+2}{n}$Sn,則數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前2016項和為$\frac{504}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知雙曲線$\frac{{x}^{2}}{k}+\frac{{y}^{2}}{6+k}=1$的實(shí)軸長為4,則雙曲線的漸近線方程為( 。
A.y=$±\frac{1}{2}x$B.y=±xC.y=±2xD.y=±$\sqrt{2}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知x,y滿足約束條件$\left\{\begin{array}{l}x≥1\\ y≥-1\\ 4x+y≤9\\ x+y≤3\end{array}\right.$,若目標(biāo)函數(shù)z=mx+y(m>0)的最大值為1,則m的值是( 。
A.$-\frac{20}{9}$B.1C.2D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)全集A={$[\begin{array}{l}{x}&{3}\\{4}&{-2}\end{array}]$,$|\begin{array}{l}{1}&{tanα}\\{sinβ}&{-2}\end{array}|$},B={$[\begin{array}{l}{1}&{y}\\{z}&{-2}\end{array}]$},且∁AB={$[\begin{array}{l}{1}&{1}\\{-\frac{1}{2}}&{-2}\end{array}]$},試求x,y,z,α,β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知a>0,若方程$\frac{a}{x-a}$=$\sqrt{4ax-2{x}^{2}}$有實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍為[$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.5名同學(xué)參加慶?谷談倮70周年文藝演出,要求是甲乙必須相鄰,而丙丁不能相鄰,不同的排隊方法的種數(shù)是( 。
A.48B.24C.20D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知集合A={x||x-1|≤a,a>0},B={x|x2-6x-7>0},且A∩B=∅,則a的取值范圍是0<a≤2.

查看答案和解析>>

同步練習(xí)冊答案