19.設全集A={$[\begin{array}{l}{x}&{3}\\{4}&{-2}\end{array}]$,$|\begin{array}{l}{1}&{tanα}\\{sinβ}&{-2}\end{array}|$},B={$[\begin{array}{l}{1}&{y}\\{z}&{-2}\end{array}]$},且∁AB={$[\begin{array}{l}{1}&{1}\\{-\frac{1}{2}}&{-2}\end{array}]$},試求x,y,z,α,β

分析 利用補集性質得$[\begin{array}{l}{x}&{3}\\{4}&{-2}\end{array}]$=$[\begin{array}{l}{1}&{y}\\{z}&{-2}\end{array}]$,且$[\begin{array}{l}{1}&{tanα}\\{sinβ}&{-2}\end{array}]$=$[\begin{array}{l}{1}&{1}\\{-\frac{1}{2}}&{-2}\end{array}]$,再由二階矩陣的性質能求出x,y,z,α,β的值.

解答 解:∵全集A={$[\begin{array}{l}{x}&{3}\\{4}&{-2}\end{array}]$,$[\begin{array}{l}{1}&{tanα}\\{sinβ}&{-2}\end{array}]$},B={$[\begin{array}{l}{1}&{y}\\{z}&{-2}\end{array}]$},且∁AB={$[\begin{array}{l}{1}&{1}\\{-\frac{1}{2}}&{-2}\end{array}]$},
∴$[\begin{array}{l}{x}&{3}\\{4}&{-2}\end{array}]$=$[\begin{array}{l}{1}&{y}\\{z}&{-2}\end{array}]$,且$[\begin{array}{l}{1}&{tanα}\\{sinβ}&{-2}\end{array}]$=$[\begin{array}{l}{1}&{1}\\{-\frac{1}{2}}&{-2}\end{array}]$,
∴$\left\{\begin{array}{l}{x=1}\\{y=3}\\{z=4}\end{array}\right.$,且$\left\{\begin{array}{l}{tanα=1}\\{sinβ=-\frac{1}{2}}\end{array}\right.$,
∴x=1,y=3,z=4,α=$\frac{π}{4}$+kπ,k∈Z,β=$\frac{7π}{6}+2kπ$或$β=\frac{11π}{6}+2kπ$,k∈Z.

點評 本題考查滿足條件的實數(shù)值的求法,是基礎題,解題時要認真審題,注意補集性質和二階矩陣的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.直線l過點$(\sqrt{2},0)$且與雙曲線x2-y2=2僅有一個公共點,這樣的直線有(  )
A.4條B.3條C.2條D.1條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在正方形ABCD-A1B1C1D1中,E是AA1的中點,則異面直線BE與B1D1所成角的余弦值等于$\frac{\sqrt{10}}{5}$,若正方體邊長為1,則四面體B-EB1D1的體積為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)y=f(x)=|x-1|-mx,若關于x的不等式f(x)<0解集中的整數(shù)恰為3個,則實數(shù)m的取值范圍為   ( 。
A.$\frac{2}{3}<m≤\frac{3}{4}$B.$\frac{3}{4}<m≤\frac{4}{5}$C.$\frac{2}{3}<m<\frac{3}{4}$D.$\frac{3}{4}<m<\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若關于x的方程($\frac{1}{2}$)x=$\frac{1}{1-lga}$有正根,則實數(shù)a的取值范圍是( 。
A.(0,1]B.(0,1)C.(1,10)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知公差不為零的等差數(shù)列{an},滿足a1+a3+a5=9,且a1,a4,a16成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設${b_n}=\frac{1}{{{a_n}{a_{n+1}}{a_{n+2}}}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在某校召開的高考總結表彰會上有3位數(shù)學老師、2位英語老師和1位語文老師做典型發(fā)言.現(xiàn)在安排這6位老師的發(fā)言順序,則3位數(shù)學老師互不相鄰的排法共有144種.(請用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.不等式(3+x)(2-x)<0的解集為{x|x>2或x<-3}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設集合A={x|x2-3x>0},B={x||x|<2},則A∩B=( 。
A.(-2,0)B.(-2,3)C.(0,2)D.(2,3)

查看答案和解析>>

同步練習冊答案