A. | ($\sqrt{5}$,$\sqrt{13}$) | B. | (1,5) | C. | (1,$\sqrt{5}$) | D. | ($\sqrt{13}$,5) |
分析 由已知可得三角形的三個(gè)角都為銳角,得到三銳角的余弦值也為正值,分別設(shè)出3和x所對的角為α和β,利用余弦定理表示出兩角的余弦,因?yàn)棣梁挺露紴殇J角,得到其值大于0,則分別令余弦值即可列出關(guān)于x的兩個(gè)不等式,根據(jù)三角形的邊長大于0,轉(zhuǎn)化為關(guān)于x的兩個(gè)一元二次不等式,分別求出兩不等式的解集,取兩解集的交集即為x的取值范圍.
解答 解:∵三角形為銳角三角形,
∴三角形的三個(gè)內(nèi)角都為銳角,
則設(shè)邊長為3所對的銳角為α,根據(jù)余弦定理得:cosα=$\frac{{2}^{2}+{x}^{2}-{3}^{2}}{4x}$>0,
即x2>5,解得x>$\sqrt{5}$或x<-$\sqrt{5}$(舍去);
設(shè)邊長為x所對的銳角為β,根據(jù)余弦定理得:cosβ=$\frac{{2}^{2}+{3}^{2}-{x}^{2}}{12}$>0,
即x2<13,解得0<x<$\sqrt{13}$,
則x的取值范圍是$\sqrt{5}$<x<$\sqrt{13}$.
故選:A.
點(diǎn)評 此題考查了余弦定理在解三角形中的應(yīng)用,熟練運(yùn)用余弦定理是解本題的關(guān)鍵,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ① | B. | ② | C. | ③ | D. | ①和② |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com