15.已知i為虛數(shù)單位,復(fù)數(shù)z1對(duì)應(yīng)的點(diǎn)是z1(1,1),z2對(duì)應(yīng)的點(diǎn)是z2(1,-1),則$\frac{z_1}{z_2}$=( 。
A.0B.iC.1D.1+i

分析 利用復(fù)數(shù)的幾何意義可得z1=1+i,z2=1-i,再利用復(fù)數(shù)的乘除運(yùn)算化簡(jiǎn)即可得出.

解答 解:∵復(fù)數(shù)z1對(duì)應(yīng)的點(diǎn)是z1(1,1),z2對(duì)應(yīng)的點(diǎn)是z2(1,-1),
∴z1=1+i,z2=1-i,
則$\frac{{z}_{1}}{{z}_{2}}$=$\frac{1+i}{1-i}$=$\frac{(1+i)^{2}}{(1-i)(1+i)}=\frac{2i}{2}=i$.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.f(x)=-x|x|+px.
(1)判斷函數(shù)的奇偶性;
(2)當(dāng)p=-2時(shí),判斷函數(shù)f(x)在(-∞,0)上單調(diào)性并加以證明;
(3)當(dāng)p=2時(shí),畫出函數(shù)的圖象并指出單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)集合A={1,0},集合B={2,3},集合M={x|x=b(a+b),a∈A,b∈B},則集合M的真子集的個(gè)數(shù)為( 。
A.7個(gè)B.12個(gè)C.16個(gè)D.15個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若函數(shù)f(x)=x3-mx2-x+5在區(qū)間(0,1)內(nèi)單調(diào)遞減,則實(shí)數(shù)m的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知O(0,0),M(2,0),N(1,0),動(dòng)點(diǎn)P滿足:$\frac{|PM|}{|PN|}$=$\sqrt{2}$;若|$\overrightarrow{OC}$|=1,在P的軌跡上存在A,B兩點(diǎn),有$\overrightarrow{CA}$•$\overrightarrow{CB}$=0成立,則|$\overrightarrow{AB}$|的取值范圍是[$\sqrt{3}-1$,$\sqrt{3}+1$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.直線l:(x+1)m+(y-1)n=0與圓x2+y2=2的位置關(guān)系是(  )
A.相切或相交B.相切或相離C.相切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.△ABC中,B=60°,c=3,b=$\sqrt{7}$,求 S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知點(diǎn)P(8m,3)是角α的終邊上一點(diǎn),且cosα=-$\frac{4}{5}$,則實(shí)數(shù)m=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.同時(shí)拋擲兩枚骰子,則至少有一個(gè)5點(diǎn)或6點(diǎn)的概率是$\frac{5}{9}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案