【題目】已知函數(shù)有兩個不同零點(diǎn)、),設(shè)函數(shù)的定義域?yàn)?/span>,且的最大值記為,最小值記為.

1)求(用表示);

2)當(dāng)時,試問以、、為長度的線段能否組成一個三角形,如果不一定,進(jìn)一步求出的取值范圍,使它們能組成一個三角形;

3)求.

【答案】1;(2;(3.

【解析】

1)應(yīng)用韋達(dá)定理計(jì)算;

2)用求根公式求出,得出,只要,以、為長度的線段就能構(gòu)成三角形;

3)求出導(dǎo)函數(shù),由已知可得時,,從而,即遞增,這樣就可求出,代入計(jì)算,注意韋達(dá)定理的代入.

(1)由題意恒成立,∴,

,

,

;

2,方程的兩根為,

,,

易知,而

若以、、為長度的線段能組成一個三角形,則,

,,

∴當(dāng)時,以、、為長度的線段能組成一個三角形.

(3),

是方程的兩個根,

,

當(dāng)時,,從而,

上單調(diào)遞增,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C過點(diǎn)M2,3,點(diǎn)A為其左頂點(diǎn),且AM的斜率為

1)求C的方程;

2)點(diǎn)N為橢圓上任意一點(diǎn),求△AMN的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上的最大值為9,最小值為1,記

1)求實(shí)數(shù)的值;

2)若不等式成立,求實(shí)數(shù)的取值范圍;

3)定義在上的函數(shù),設(shè)將區(qū)間任意劃分成個小區(qū)間,如果存在一個常數(shù),使得和式恒成立,則稱函數(shù)為在上的有界變差函數(shù).試判斷函數(shù)是否為在上的有界變差函數(shù)?若是,求的最小值;若不是,請說明理由(表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面是菱形的四棱錐P-ABCD中,PA⊥平面ABCD,∠ABC=60°,PA=AB=2,點(diǎn)E,F分別為BCPD的中點(diǎn),設(shè)直線PC與平面AEF交于點(diǎn)Q

1)已知平面PAB平面PCD=l,求證:ABl

2)求直線AQ與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),;

若函數(shù)上存在零點(diǎn),求a的取值范圍;

設(shè)函數(shù),,當(dāng)時,若對任意的,總存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體的棱長為1,分別為的中點(diǎn).則( )

A.直線與直線垂直B.直線與平面平行

C.平面截正方體所得的截面面積為D.點(diǎn)和點(diǎn)到平面的距離相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若集合,集合函數(shù)至多有一個零點(diǎn),則的元素之和的函數(shù)關(guān)系式_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)fx)是定義域?yàn)?/span>R的偶函數(shù),且fx+3)=fx-1),若當(dāng)x∈[-2,0]時,fx)=2-x,記,c=f(32),則a,b,c的大小關(guān)系為(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某文體局為了解“跑團(tuán)”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期間“跑團(tuán)”每月跑步的平均里程(單位:公里)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)折線圖,下列結(jié)論正確的是( )

A. 月跑步平均里程的中位數(shù)為6月份對應(yīng)的里程數(shù)

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在8、9月

D. 1月至5月的月跑步平均里程相對于6月至11月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

同步練習(xí)冊答案