7.函數(shù)f(x)=($\frac{1}{2}$)${\;}^{(2{x}^{2}-3x+1)}$的增區(qū)間是(-∞,$\frac{3}{4}$).

分析 令z=2x2-3x+1,則y=f(x)=($\frac{1}{2}$)z,求得二次函數(shù)的單調(diào)性,由指數(shù)函數(shù)的單調(diào)性,復(fù)合函數(shù)的單調(diào)性:同增異減,即可得到所求增區(qū)間.

解答 解:函數(shù)f(x)的定義域?yàn)镽,
令z=2x2-3x+1,
可得y=f(x)=($\frac{1}{2}$)z在(-∞,+∞)遞減,
函數(shù)z=2x2-3x+1在(-∞,$\frac{3}{4}$)遞減,在($\frac{3}{4}$,+∞)遞增,
由復(fù)合函數(shù)的單調(diào)性:同增異減,可得
函數(shù)f(x)的增區(qū)間為(-∞,$\frac{3}{4}$).
故答案為:(-∞,$\frac{3}{4}$).

點(diǎn)評(píng) 本題考查復(fù)合函數(shù)的單調(diào)性:同增異減,考查指數(shù)函數(shù)和二次函數(shù)的單調(diào)性,以及運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)D、E為線段AB,AC上的點(diǎn),滿足AD=BD,AE=2CE,且$\overrightarrow{BE}$•$\overrightarrow{CD}$=0,記α為$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角,則下述判斷正確的是( 。
A.cosα的最小值為$\frac{{\sqrt{3}}}{3}$B.cosα的最小值為$\frac{{2\sqrt{5}}}{5}$
C.sin(2α+$\frac{π}{2}$)的最小值為$\frac{1}{2}$D.sin($\frac{π}{2}$-2α)的最小值為$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c(a<b<c).已知向量$\overrightarrow m$=(a,c),$\overrightarrow n$=(cosC,cosA)滿足$\overrightarrow m$•$\overrightarrow n$=$\frac{1}{2}$(a+c).
(1)求證:a+c=2b;
(2)若2csinA-$\sqrt{3}$a=0,且c-a=8,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}滿足an=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2n-1}$(n∈N*),則an+1-an=$\frac{4n+1}{2n(2n+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0、|φ|<$\frac{π}{2}$)的圖象的一部分如圖所示.
(1)求函數(shù)f(x)在[0,π]上的單凋遞增區(qū)間:
(2)已知g(x)=$\left\{\begin{array}{l}{1(0<x<π)}\\{\frac{1}{2}(x=π)}\\{0(π<x<2π)}\end{array}\right.$,求函數(shù)y=f(x)與y=g(x)圖象的所有交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若a=log23,則2a+2-a=$\frac{10}{3}$,4a+4-a=$\frac{82}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=2x-sinx($\frac{1}{3}π$≤x≤$\frac{5}{6}π$)的值域?yàn)閇$\frac{2π}{3}$-$\frac{\sqrt{3}}{2}$,$\frac{5π}{3}$$-\frac{1}{2}$}..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.對(duì)于任意非零向量$\overrightarrow{a}$=(a1,a2,a3),$\overrightarrow$=(b1,b2,b3),給出下面三個(gè)命題:
(1)$\overrightarrow{a}$∥$\overrightarrow$?$\frac{{a}_{1}}{_{1}}$=$\frac{{a}_{2}}{_{2}}$=$\frac{{a}_{3}}{_{3}}$;
(2)cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{{a}_{1}_{1}+{a}_{2}_{2}+{a}_{3}_{3}}{\sqrt{{a}_{1}^{2}+{a}_{2}^{2}+{a}_{3}^{2}}•\sqrt{_{1}^{2}+_{2}^{2}+_{3}^{2}}}$;
(3)若a1=a2=a3=1,則$\overrightarrow{a}$為單位向量.
其中正確命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.tan$\frac{θ}{2}$=$\frac{1}{4}$,則sinθ+cosθ=$\frac{23}{17}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案