16.對(duì)于任意非零向量$\overrightarrow{a}$=(a1,a2,a3),$\overrightarrow$=(b1,b2,b3),給出下面三個(gè)命題:
(1)$\overrightarrow{a}$∥$\overrightarrow$?$\frac{{a}_{1}}{_{1}}$=$\frac{{a}_{2}}{_{2}}$=$\frac{{a}_{3}}{_{3}}$;
(2)cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{{a}_{1}_{1}+{a}_{2}_{2}+{a}_{3}_{3}}{\sqrt{{a}_{1}^{2}+{a}_{2}^{2}+{a}_{3}^{2}}•\sqrt{_{1}^{2}+_{2}^{2}+_{3}^{2}}}$;
(3)若a1=a2=a3=1,則$\overrightarrow{a}$為單位向量.
其中正確命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

分析 根據(jù)空間向量的坐標(biāo)表示與應(yīng)用問題,對(duì)題目中的命題逐一分析、判斷即可.

解答 解:對(duì)于向量$\overrightarrow{a}$=(a1,a2,a3),$\overrightarrow$=(b1,b2,b3),
(1)$\overrightarrow{a}$∥$\overrightarrow$?$\frac{{a}_{1}}{_{1}}$=$\frac{{a}_{2}}{_{2}}$=$\frac{{a}_{3}}{_{3}}$不一定成立,如$\overrightarrow{a}$=(0,0,1),$\overrightarrow$=(0,0,2)時(shí),$\frac{{a}_{1}}{_{1}}$與$\frac{{a}_{2}}{_{2}}$無意義,是假命題;
(2)cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{{a}_{1}_{1}+{a}_{2}_{2}+{a}_{3}_{3}}{\sqrt{{a}_{1}^{2}+{a}_{2}^{2}+{a}_{3}^{2}}•\sqrt{_{1}^{2}+_{2}^{2}+_{3}^{2}}}$是求向量$\overrightarrow{a}$、$\overrightarrow$夾角的余弦值公式,是真命題;
(3)當(dāng)a1=a2=a3=1時(shí),|$\overrightarrow{a}$|=$\sqrt{3}$,不是單位向量,是假命題.
以上正確命題的個(gè)數(shù)為1.
故選:B.

點(diǎn)評(píng) 本題考查了空間向量的坐標(biāo)表示與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)a為非零常數(shù),已知(x+$\frac{2}{x}$)(1-ax)4的展開式中各項(xiàng)系數(shù)和為3,展開式中x2項(xiàng)的系數(shù)是-72.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=($\frac{1}{2}$)${\;}^{(2{x}^{2}-3x+1)}$的增區(qū)間是(-∞,$\frac{3}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知250x=100,($\frac{1}{2}$)y=100,則$\frac{1}{x}$-$\frac{2}{y}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}滿足an+1=$\frac{(n+2){a}_{n}^{2}-{na}_{n}+n+1}{{a}_{n}^{2}+1}$,(n∈N+),且a1=1.
(1)求a2,a3,a4的值,猜測(cè)an,并用數(shù)學(xué)歸納法證明;
(2)比較3an與(n-1)2n+2n2的大小,并給出證明過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在數(shù)列{an}中,已知an=$\left\{\begin{array}{l}{2n-1,n為奇數(shù)}\\{3n+2,n為偶數(shù)}\end{array}\right.$.它的前n項(xiàng)和為Sn,求Sn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.己知函數(shù)f(x)=cos(πx+φ)(0<φ<$\frac{π}{2}$)圖象過點(diǎn)(0,$\frac{\sqrt{2}}{2}$),如圖所示.
(1)求φ的值;
(2)若f(α)=$\frac{3}{5}$且α∈[-$\frac{1}{4}$,$\frac{1}{4}$],求sinπα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某射手在相同條件下射擊5次,命中環(huán)數(shù)分別為:7,9,9,8,7,則該樣本的標(biāo)準(zhǔn)差為( 。
A.0.64B.0.80C.0.89D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)y=2sin($\frac{1}{2}$x+$\frac{π}{3}$).
(1)求函數(shù)的最大值、最小值和最小正周期;
(2)函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案